UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

REGION 4 ATLANTA FEDERAL CENTER 61 FORSYTH STREET ATLANTA, GEORGIA 30303-8960

JUN 2 5 2014

Mr. Keith Bentley Georgia Environmental Protection Division Dept. of Natural Resources 205 Butler Street Suite 1154 – East Tower Atlanta, GA 30334

Subject:

Seven Out Tank Site/Francis Street Site Assessment

Wavcross, Ware County, Georgia

Dear Mr. Bentley:

The U.S. Environmental Protection Agency's Emergency Response and Removal Branch (ERRB) conducted a Removal Site Evaluation (RSE) at the above referenced site for potential removal action eligibility under the National Contingency Plan (NCP).

Based on the information collected during the RSE, the On-Scene Coordinator (OSC) recommends this site be given a **no further action** for removal eligibility under the EPA's Superfund Removal Program (see enclosed RSE memo).

This determination does not preclude any other investigation or response action by other parties which may still be appropriate for this site. Should site conditions change or additional information become available, ERRB will re-evaluate this site as necessary.

Should you have any questions concerning ERRB's determination, please contact Matthew Huyser. OSC, at (404) 562-8934, or Matt Taylor, Chief of Removal Operations Section, at (404) 562-8759.

Sinderely,

Ronald Saskowski

Richard Hammond

Anita Davis

Webster, Chief

Emergency Resoonse & Removal Branch

Enclosure

cc: Dawn Taylor

Tony Moore

Matt Taylor

James Webster

Matthew Huyser

Kerri Sanders

Greg Harper

U.S. ENVIRONMENTAL PROTECTION AGENCY POLLUTION/SITUATION REPORT

Francis Street Assessment Removal Site Evaluation POLREP

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY **Region IV**

Subject:

POLREP

Removal Site Evaluation

Francis Street Site Assessment (Concerning the "Seven Out Tank Site")

901 Francis Street, Waycross, Ware County, Georgia

Latitude:

31.207401° North

Longitude:

082.363473° West

To:

Matt Taylor, USEPA R4 ERRB

Jeff Cown, GA EPD Land Protection Branch

From:

Matthew J. Huyser, On-Scene Coordinator

Date:

June 20, 2014

Reporting Period: September 19, 2013 – April 15, 2014

1.0 Introduction

Site Number:

N/A

Response Authority:

CERCLA

Response Type:

Time-Critical

Response Lead:

EPA

Incident Category:

Removal Assessment

NPL Status:

Non NPL

1.1. SITE DESCRIPTION

Information on the Seven Out Tank Site and Francis Street Site Assessment Site Description is provided in greater detail in the attached Francis Street Special Site Assessment Report.

1.1.1. SEVEN OUT TANK SITE

The Seven Out facility (the "Site") was an industrial wastewater treatment plant in Waycross, Ware County, Georgia, that operated from 2002 to 2004. The Site once held a tank farm of 37 tanks with a combined capacity of approximately 400,000 gallons. Effluents regularly exceeded requirements of the company's pre-treatment discharge permit and facility received several Notices of Violation plus an Administrative Order from the City of Waycross. On March 1, 2004, the City of Waycross disconnected the facility's connection to the POTW. Shortly thereafter and since that time, the facility ceased all operations without discharging the remaining waste in storage.

Georgia Environmental Protection Division (GAEPD) referred the Site to the U.S. Environmental Protection Agency (EPA) Region 4 (R4) Emergency Response and Removal Branch (ERRB) for a Removal Site Evaluation (RSE). An emergency action was initiated by EPA on January 27, 2005 and pumpable liquids in the tanks and standing water in the secondary containment area were removed. An administrative order was signed on July 30, 2008, between EPA and Respondents (consisting of several generators that sent waste to the facility) to conduct a time-critical removal action to remove all remaining waste materials from the Site. When the work was concluded, EPA issued the notice of completion letter on November 16, 2009.

1.1.2. Francis Street Site Assessment

In August of 2013, EPA was contacted by residents of Waycross, Georgia, regarding health problems experienced by occupants of homes surrounding Mary Street Park (also known as "Folks Park") and the potential relationship of these symptoms to contaminants originating from the Seven Out Tank Site. Due to the proximity of the Site to the Mary Street Park residences, the stormwater drainage flow from the Site to the unnamed creek, and the reported detections of PAHs in the unnamed creek sediments at the park, the community group believes that contamination originating from the Seven Out Tank Site may be the cause of local health and environmental problems that they have observed.

1.2. Preliminary Removal Assessment/Removal Site Inspection Results

Information on the Francis Street Site Assessment Preliminary Removal Assessment and Removal Site Inspection Results are provided in greater detail in the attached Francis Street Special Site Assessment Report.

EPA On-Scene Coordinator (OSC) Matthew Huyser visited the Site on September 5, 2013 and observed that no visible significant changes had occurred at the facility since the removal action had been completed in 2009. Also on September 5, OSC Huyser met with representatives of the community group and observed areas of concern in the unnamed creek and the residential yards.

The analytical results from a sediment sample collected by the community group from the unnamed creek in Mary Street Park point to a presence of PAHs that correspond to a list of PAHs detected in a soil sample collected by EPA during a RSE on August 26, 2004 at the Seven Out Tank Site. Sample SOSW was collected from discolored surface soils outside the containment area of the tank farm. Of the four soil samples collected during EPA's 2004 assessment, this was the only sample which showed detectable levels of PAHs.

The community's primary concern regarding EPA's samples was in the EPA's December 9, 2004 Removal Assessment Report in which the soil sample results are evaluated against to the EPA Region 9 Preliminary Remediation Goal (PRG) Residential Screening Levels (RSLs) and Industrial Screening Levels (ISLs). When compared to the Region 9 PRGs, sample SO-SW exceeds the industrial soil

screening level for Benz(a)anthracene. Benzo(a)pyrene, Benzo(k)flouranthene, Dibenz[a,h]anthracene, and Indeno[1,2,3-cd]pyrene; and also exceeds the residential soil screening level for Benzo(b)fluoranthene.

Additional sampling was recommended to delineate the potential contaminants in the drainage pathway that may have been released from the Site. Also, a detailed and up-to-date drainage path evaluation was recommended to determine whether previous determinations of runoff behavior from the Site were either inaccurate or have changed.

1.3. SITE LOCATION

The Seven Out Tank Site includes an office building, storage building, tank farm, and paved parking areas. The tank farm is not fenced and is accessible to the public via Folks Street, Francis Street, or McDonald Street. The property is immediately surrounded by commercial buildings to the east, west, and north with a major CSX Railroad terminal to the south. A lot to the south was previously used for staging mobile tanks that the facility used to store untreated waste water. The nearest residential property is located at 103 Folks Street approximately 220 feet from the tank farm area; nearby residential neighborhoods are located to the west and north.

The facility lies in an area of minimal flooding outside the 100-year flood zone. Rainfall on the Site drains into a ditch between the tank farm and a railroad line; this ditch flows west roughly parallel to the railroad line for approximately 1200 feet and discharges into a branch of the city drainage canal. The canal flows northeast for approximately 5000 feet, flowing through Mary Street Park and underground through the city center.

2.0 REMOVAL SITE EVALUATION

Information on Francis Street Site Assessment Removal Site Evaluation is provided in greater detail in the attached Francis Street Special Site Assessment Report.

The additional sampling proposed by EPA focuses on the drainage pathway from the Site and evaluates whether contaminants of concern in sample SO-SW from the 2004 RSE have migrated downstream. Incremental Sampling Method (ISM) was selected to provide a high quality representative sample of mean contaminant concentrations in distinct sections (known as: decision units or "DU"s) of the drainage path.

Decision Unit (DU)-01 is within the drainage ditch but located upstream of the Seven Out facility. DU-02 is a short section of ditch located at the southeast corner of the Seven Out facility that transports drainage water from the east side of the facility to the larger drainage ditch along the south boundary of the property. DU-03 is within the drainage ditch section that receives stormwater from the facility, beginning downstream of the intersection of DU-01 and DU-02. DU-04 is located within a branch of the city drainage canal but is upstream of the intersection (i.e. "confluence") of the drainage ditch (DU-03) with the canal. DU-05 is located within the canal and is downstream of the confluence with the drainage ditch; this section begins at the confluence with the drainage ditch then ends at Folks Street, and includes the section of the canal that traverses through Mary Street Park. Additionally, a soil sample was collected from the same location as EPA's 2004 "SO-SW" sample at the Seven Out Tank Site. Sample

results were compared with a series of generic criteria including RSLs, RMLs, and GAEPD Type 1 Soil Risk Reduction Standards ("GA Type 1 RRS").

New soil sample results show that the soil outside the south perimeter of the tank farm at the Seven Out facility from which sample SO-SW was collected during the EPA RSE in 2004 have remained relatively unchanged. Concentrations of Benzo(a)pyrene in these samples meet or exceed some parameters in the EPA generic RML for Residential Soils and the Georgia Type 1 RRS but do not exceed the EPA generic RML for Industrial Soils or the Georgia Type 3 RRS for non-residential use areas.

The soil represented by samples outside the tank farm cover an area no greater than 200 square feet; less than 0.15% of the total property surface. Concentrations in these samples are therefore not representative of average surface concentrations at the Site. Migration of contaminants to groundwater is also not considered a serious threat due to the relatively low concentration, small size of the source area, low mobility of PAHs compared, and lack of receptors. Due to the lack of threat posed by the soils adjacent to the tank farm, excavation or other response action to address this area is not necessary and is not recommended.

Sampling in the drainage ditch provides information on whether PAHs from the Site are being transported downstream. Results show that the concentrations of PAHs in the ditch are significantly lower than those found in the small area of soil near the tank farm. None of the constituents measured in samples taken from DU01, DU02, or DU03 exceed either the residential or industrial EPA generic RMLs nor do they exceed the Georgia Type I or Type 3 RRSs. Due to the lack of threat posed by the sediments represented in samples FSA-SD-DU01, FSA-SD-DU02, and FSA-SD-DU03, excavation or other response action to address the ditch is not necessary and is not recommended.

Sampling in the drainage canal provides information on whether PAHs that were measured in the drainage ditch are being transported into residential areas. Results show that the concentrations of PAHs in the drainage canal are significantly lower than those found in the small area of soil near the tank farm and the drainage ditch. None of the constituents measured in samples taken from DU04, DU05, or the confluence (intersection) with the drainage ditch exceed either the residential or industrial EPA generic RMLs nor do they exceed the Georgia Type I or Type 3 RRSs. Due to the lack of threat posed by the sediments represented in samples FSA-SD-DU04, FSA-SD-CO, and FSA-SD-DU05, excavation or other response action to address the canal is not necessary and is not recommended.

A site-specific exposure dose calculation was made by the Georgia Department of Public Health (DPH) Chemical Hazards Program in a 2013 Health Consultation. The calculations were made using analytical data provided by a resident who collected a sediment sample from the canal in the park. DPH calculated an estimated *cumulative* exposure dose as well as an estimated *cumulative* cancer risk that children may have from exposure in the park based on very conservative exposure scenarios. DPH's findings reported that the exposure dose and cancer risk in these scenarios was significantly lower than the assumptions that are used by EPA to calculate generic RSL values.

EPA's recommendation for additional work in the September 19, 2013 Special POLREP included the completion of a detailed and up-to-date drainage path evaluation to determine whether previous

¹ This sample and the laboratory analysis that was obtained is useful for comparative purposes only. The sample was not collected under any sampling and analysis plan or a quality assurance project plan and therefore the results cannot be validated for decision-making purposes.

statements of runoff behavior from the Site were either inaccurate or have changed. The evaluation concluded that observed drainage patterns at the Seven Out Tank Site and surrounding area (within the boundaries of the Site and DU01 through DU05) have not changed since 2004.

3.0 RECOMMENDATION

The additional sampling that was recommended in EPA's Seven Out Tank Site Special POLREP dated September 19, 2013 was conducted on December 19, 2013. Sample results were thoroughly reviewed by EPA with supporting reviews by GAEPD and Georgia DPH. A Special Site Assessment Report (attached) has been prepared to document EPA Region 4 ERRB's justification for recommending no further assessment or removal action at the Francis Street Site or Seven Out Tank Site.

Section 300.415 of the National Oil and Hazardous Substances Pollution Contingency Plan (NCP) lists factors to be considered in determining the appropriateness of a removal action [40 CFR §300.414(b)(2)(i-vii)]. After careful review of the recent and historical data available for the Site, EPA Region 4 ERRB finds that the Francis Street Site and the Seven Out Tank Site do not meet these criteria and that a removal action is not recommended.

EPA did not encounter an indication of additional contaminants or contaminated media that could have been overlooked by the December 19, 2013 sampling event. The sampling design was based on available information of probable compounds and exposure scenarios resulting from the Seven Out Tank Site. Without additional information on actual or potential releases to the environment of contaminants associated with Seven Out Tank, LLC that have not already been evaluated, EPA Region 4 ERRB recommends no additional sampling for RSE purposes.

GAEPD and Georgia DPH have and/or will release additional reports or other materials in response to community concerns in Waycross, Georgia. EPA will continue to support the State of Georgia wherever possible in order to ensure that these concerns are adequately addressed.

Concur - Moto Taylore 5-24-2014

U.S. ENVIRONMENTAL PROTECTION AGENCY SPECIAL SITE ASSESSMENT REPORT

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY Region IV Superfund Division Emergency Response and Removal Branch

Francis Street Site Assessment Waycross, Ware County, Georgia

> Prepared by Matthew J. Huyser On-Scene Coordinator

> > June 20, 2014

TABLE OF CONTENTS

1.0 Intro	duction	1
1.1. Sit	e Description	1
1.1.1.	Seven Out Tank Site	1
1.1.2.	Francis Street Site Assessment	3
	nneis Street Site Assessment - Preliminary Removal Assessment Removal Site Inspec	
1.2.1.	Initial Site Visit	4
1.2.2.	Initial Review of Available Data	5
1.2.3.	Initial Site Recommendation	9
1.2.4.	Additional Activities	10
2.0 Franc	cis Street Site Assessment - Removal Site Evaluation	11
2.1. Ad	lditional Sampling	11
2.1.1.	Incremental Sampling Method	11
2.1.2.	Sampling Design	13
2.2. Re	view of Additional Sampling Data	15
2.2.1.	Discussion of Comparison Values	15
2.2.2.	Results from Soil Samples Outside South Containment Wall	16
2.2.3.	Results from Sediment Samples in Drainage Ditch South of Site	17
2.2.4.	Results from Sediment Samples in Branch of City Drainage Canal	19
2.3. Dr	ainage Path Evaluation	23
3.0 Reco	mmendation	23

Appendix 1 – Glossary of Acronyms

Appendix 2 – References

Appendix 3 – Drainage Path Evaluation

Attachment 1 – Special POLREP for Seven Out Tank Site. September 19,2013

Attachment 2 – Final Assessment Letter Report for Francis Street Site. April 3, 2014

- Table 1. Soil Samples Collected by EPA and by Community Group
- Table 2. Screening Levels used for Comparison in Removal Assessment Report
- Table 4. Concentrations of PAHs from Tanks CT-1 and CT-4
- Table 5. Concentrations of PAHs from Tank CT-5
- Table 6. Comparison of Soil Samples in Same Area from 2004 to 2013
- Table 7. Results of Sediment Samples from Drainage Ditch at South Border of Site
- Table 8. Results of Sediment Samples from Drainage Canal
- Table 9. Sediment Samples Collected in Canal by EPA and by Community Group

1.0 Introduction

Site Number:N AResponse Authority:CERCLAResponse Type:Time-Critical

Response Lead: EPA

Incident Category: Removal Assessment

NPL Status: Non NPL

Much of the following information was provided in a Seven Out Tank Site Special Pollution Report ("POLREP") dated September 19, 2013 (Attachment 1). The site description and removal site evaluation information is repeated in this report to provide a complete narrative of the completion of the Seven Out Tank Site removal action and the work done under the Francis Street Site Assessment.

1.1. SITE DESCRIPTION

1.1.1. SEVEN OUT TANK SITE

The Seven Out facility (the "Site") was an industrial wastewater treatment plant in Waycross, Ware County, Georgia, that operated from 2002 to 2004. The Site consists of a tank farm, an abandoned office building, and a small warehouse. The tank farm had 37 tanks ranging in volume of 8,000 gallons to 44,000 gallons, and a combined capacity of approximately 400,000 gallons. It is approximately one-half acre and is made of a concrete floor with a short concrete containment berm. South of the containment area is an office building of about 3,000 square feet. Around the south and east sides of the office building is a fenced lot that contains the warehouse of about 4,500 square feet. The warehouse contained several drums, totes, and dry bags of material.

When the facility operated, treated wastewater was discharged to the City of Waycross publicly owned treatment works (POTW) using the City's collection system. Precipitated solids were treated in a filter press, and then transported off-Site for disposal at a landfill. The treatment process was generally unsuccessful and effluents regularly exceeded requirements of the company's pre-treatment discharge permit. The Seven Out facility received several Notices of Violation and an Administrative Order from the City of Waycross. On March 1, 2004, the City of Waycross disconnected the facility's connection to the POTW. The facility discontinued processing wastewaters, although it still received shipments. Incoming wastewaters were stored in tanks on-Site as well as four rented portable tanks that were placed on an adjoining property. Shortly thereafter and since that time, the facility ceased all operations without discharging the remaining waste in storage. Georgia Environmental Protection Division (GAEPD) determined the facility to be incorrectly storing hazardous wastes and out of compliance with State of Georgia regulations.

GAEPD referred the Site to the U.S. Environmental Protection Agency (EPA) Region 4 (R4) Emergency Response and Removal Branch (ERRB) for a Removal Site Evaluation (RSE). From August 23-26, 2004, EPA collected samples from onsite storage and treatment tanks. Because discolored soil was observed in some areas, soil samples were collected from a drainage ditch near the containment

area, an area adjacent to frac tanks¹ that had been stored outside the containment area, and along the south wall of the containment area. An emergency action was initiated by EPA on January 27, 2005 following a request for assistance from GAEPD on January 21, 2005. Under the emergency response action, pumpable liquids in the tanks and standing water in the secondary containment area were removed to mitigate the threat of release.

From August 28 - September 1, 2006, GAEPD collected samples from the Site and the surrounding area as part of a remedial Site Inspection (SI) (Ref. 3). Their findings were submitted to EPA's Superfund Site Assessment Section on November 20, 2006 where it was determined that the Site did not qualify for further remedial site assessment due to lack of releases and targets for groundwater, surface water, and soil pathways.

After the 2005 emergency response, significant quantities of liquid and solid waste remained at the Site. An administrative order was signed on July 30, 2008, between EPA and Respondents, consisting of several generators that sent waste to the facility, to conduct a time-critical removal action to remove all remaining waste materials from the Site. The work to be performed under the order included:

- Implementation of the OSC-approved removal action in accordance with the schedule and requirements of a Removal Action Work Plan:
- Removal of waste material from all tanks, drums, and other containers on the Site, as well as from the secondary containment area;
- Decontamination and or disposal of all tanks, drums, and other containers on the Site, as well as decontamination of the secondary containment area; and,
- Disposal of the waste material removed from the Site, including any sampling and analysis necessary to determine proper treatment and disposal methods.

EPA conducted oversight of all removal activities, including collection of split-samples from several tanks. Over the course of the removal action, a total of 300,000 gallons of rainwater was discharged to the Waycross POTW, 905 tons of nonhazardous solid wastes were sent to an off-site landfill for disposal, and 3,900 gallons plus 108 tons of hazardous wastes (HW codes D002, D006, D007, and D018) were sent off-site for treatment and disposal. When the work was concluded and a final report was received, EPA issued the notice of completion letter on November 16, 2009.

1.1.1.1. SEVEN OUT TANK SITE LOCATION

The Site includes an office building, storage building, tank farm, and paved parking areas. The tank farm is not fenced and is accessible to the public via Folks Street, Francis Street, or McDonald Street. The property is immediately surrounded by commercial buildings to the east, west, and north with a major CSX Railroad terminal to the south. A lot to the south was previously used for staging mobile tanks that the facility used to store untreated waste water. The nearest residential property is located at 103 Folks Street approximately 220 feet from the tank farm area; nearby residential neighborhoods are located to the west and north.

¹ "Frac Tank" is an industry term for a category of temporary mobile tanks used for storage of water and other liquids

The Site lies in an area of minimal flooding outside of both the 100-year and 500-year flood zones. Rainfall on the Site drains into a ditch between the tank farm and a railroad line; this ditch flows west roughly parallel to the railroad line for approximately 1200 feet and discharges into an unnamed creek. Just south of the ditch is a petroleum facility, C & M Oil Company, which also discharges overland runoff to the drainage ditch. Immediately south of this intersection is a former BP fuel tank farm, which also discharges overland runoff to the unnamed creek. The creek flows northeast for approximately 5000 feet, flowing through Mary Street Park and underground through the city center after which it emerges at Lee Avenue and Memorial Drive (Hwy 23). Water then flows east for less than 1000 feet then joins the Waycross City Drainage Canal the PPE. The City Drainage Canal flows in a northeast direction for approximately 3 miles before joining the Satilla River.

1.1.2. Francis Street Site Assessment

In August of 2013, EPA was contacted by residents of Waycross, Georgia, regarding health problems experienced by occupants of homes surrounding Mary Street Park (also known as "Folks Park") and the potential relationship of these symptoms to contaminants originating from the Seven Out Tank Site. Information and concerns from the community are being posted and documented at a website (www.silentdisaster.org) as well as an accompanying facebook group page.

The community group has documented complaints from individuals at residences surrounding Mary Street Park, as well as from members of a church at the perimeter of the park. The group has also documented complaints from employees of a bank and the Wayeross City Hall which are located over or near the underground unnamed creek. Reported health problems include the following:

- Tumors or "masses" (both benign and malignant)
- Cancer
- Respiratory problems
- Neurological problems
- Headaches
- Shaking or tremors
- Fatigue
- Vision and hearing trouble
- Sores

The community group has also documented unidentifiable sheen(s) emanating from lawns around Mary Street Park and within the unnamed creek through the park. The sheen is observed on pavement and surface water after rain events and a "dry white substance" is deposited when the sheen has dried. Additional concerns include the deterioration and death of trees in Mary Street Park and deformation of amphibians in the unnamed creek within the park.

The community group collected a sediment sample² from the unnamed creek in Mary Street Park on July 3, 2013, and sent the sample to an environmental analytical laboratory for analysis³. The laboratory returned a report⁴ with detections of Polycyclic Aromatic Hydrocarbons (PAHs) (also known as "Poly-Aromatic Hydrocarbons" or "Polynuclear Aromatic Hydrocarbons") including Benz(a)anthracene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Chrysene, Fluoranthrene, Phenanthrene, and Pyrene. These constituents correspond to a list of PAHs detected in a soil sample collected by EPA during a RSE on August 26, 2004 (Ref. 10) at the Seven Out Tank Site (Table 1).

Due to the proximity of the Site to the Mary Street Park residences, the stormwater drainage flow from the Site to the unnamed creek, and the reported detections of PAHs in the unnamed creek sediments at the park, the community group believes that contamination originating from the Seven Out Tank Site may be the cause of local health and environmental problems that they have observed.

1.2. FRANCIS STREET SITE ASSESSMENT - PRELIMINARY REMOVAL ASSESSMENT/REMOVAL SITE INSPECTION RESULTS

1.2.1. Initial Site Visit

EPA On-Scene Coordinator (OSC) Matthew Huyser visited the Site on September 5, 2013 and observed that no visible significant changes had occurred at the facility since the removal action had been completed in 2009. Thick vegetation had grown outside the south border of the tank farm and has reached heights in excess of 10 feet. Standing water was observed on the east side of the property both inside and outside the containment area; the inability of the Site to fully shed rainwater is consistent with observations made during the 2008-2009 removal action. This behavior is likely due to an intentional design that would help keep liquids on-site in the event of a spill.

Also on September 5. OSC Huyser met with representatives of the community group and observed the areas in the unnamed creek and the residential yards where sheens had been observed and photographed. A light sheen of approximately 5 square centimeters was observed between vegetation within the creek flowing through Mary Street Park; this sheen presented characteristics perceptibly consistent with a hydrocarbon source as opposed to a discharge from a bacterial or other localized organic source. The sheen and or residue on paved surfaces that had been reported from residential yards after rain events were not visible on September 5. Another area observed was near a culvert where the drainage ditch at the southern border of the Site passed under S Nicholls Street; concerns of dying or absent vegetation were pointed out in an area at the northwest corner of a property owned by CSX Railroad. The final area observed was at the intersection of the unnamed creek and Margaret Street, approximately 2500 feet upstream from Mary Street Park and 1000 feet upstream from the confluence with the drainage ditch that passes the southern border of the Seven Out Tank Site. Concerns of previously observed sheens and

² This sample and the laboratory analysis that was obtained is useful for comparative purposes only. The sample was not collected under any sampling and analysis plan or a quality assurance project plan and therefore the results cannot be validated for decision-making purposes.

³ Ana-Lab Corp., Kilgore, TX

⁴ Ana-Lab Corp. Report of Soil Sample Results from Mary Street (Folks) Park, Waycross, GA, Project # 619468. July 3, 2013.

light tan foam were pointed out; no sheen was visible on September 5 but light foam was observed collecting around debris in the creek.

1.2.2. Initial Review of Available Data

1.2.2.1. REVIEW OF 2004 RSE DATA

The analytical results from a sediment sample collected by the community group from the unnamed creek in Mary Street Park point to a presence of PAHs that correspond to a list of PAHs detected in a soil sample collected by EPA during a RSE on August 26, 2004 (Ref. 10) at the Seven Out Tank Site (See Table 1):

Table 1. Soil Samples Collected by EPA and by Community Group

	Source:	South Perimeter of Seven Out Site Collected 8/26/2004	Soil Sample SO-DD Taken by EPA Near Drainage Area of Seven Out Site Collected 8/26/2004	Sediment Sample Collected by Resident in Unnamed Creek at Mary Street Park Collected 7/3/2013
	Units:	mg/kg	mg/kg	mg/kg
ons	Benz(a)anthracene	2.4	0.33 UJ	0.556
Hydrocarbons	Benzo(a)pyrene	2.8	0.33 U	ND
Iroc	Benzo(b)fluoranthene	1.8	0.33 U	0.827
	Benzo(k)fluoranthene	3.2	0.33 U	0.398
omatic (PAHs)	Chrysene	3.1	0.330 UJ	0.671
mo. PA	Dibenz[a,h]anthracene	0.65	0.33 U	ND
ΙΨ	Fluoranthrene	4.6	0.33 U	0.691
Polynuclear Aromatic (PAHs)	Indeno[1,2,3-cd]pyrene	3	0.33 U	ND
ynu	Phenanthrene	1.8	0.4	0.378
Pol	Pyrene	4	0.330 UJ	1.52

Sample SO-SW was collected from discolored surface soils outside the containment area of the tank farm, near the mechanical sludge press at the southeast corner. Of the four samples collected during EPA's assessment, this was the only sample which showed detectable levels of PAHs. One of the samples which did not show detectable of PAHs was sample SO-DD, which was collected within the drainage path (but not in the drainage ditch) exiting the Site at the southeast corner. The two other soil samples were collected from discolored soils near the frac tanks at the south lot from the facility.

Although lead and arsenic were detected in samples SO-SW and SO-DD during the 2004 EPA RSE, neither exceeded generic RMLs for industrial soils (800 mg/kg for Lead and 240 mg/kg for Arsenic) (U.S. EPA, Region 4, 2013a) and neither was found within the contents of materials at the Site during the 2004 RSE or the 2008-2009 removal action (U.S. EPA, 2009; and Winter Environmental, 2009) to indicate a potential source of these metals. The metals were not identified as a contaminant of concern

for the removal action. The Toxicity Characteristic Leaching Procedure ⁵ (TCLP) lead concentration for sample SO-DD of 8.13 mg/L exceeded the regulatory disposal limit of 5 mg/L [40 CFR §261.24(b)] while the TCLP lead concentration for sample SO-SW was only 0.069 mg/L; this occurred despite the measurements that showed a total lead concentration in SO-DD of 17.7 mg/kg below the total lead concentration in SO-SW of 264 mg/kg. Typically, it would be anticipated that a higher concentration of total lead would result in a comparable increase in lead leachate concentration. No cause for this discrepancy is proposed in the 2004 Removal Assessment Report and it is unlikely that the cause can be determined from the available data.

1.2.2.2. Discussion of Comparison Values: RSLs, RMLs, and PRGs

The community's primary concern regarding EPA's samples relates to a comparison that was made in EPA's December 9, 2004 Removal Assessment Report in which the soil sample results are evaluated against to the EPA Region 9 Preliminary Remediation Goal (PRG) (Ref. 9) Residential Screening Levels (RSLs) and Industrial Screening Levels (ISLs) (See Table 2):

Table 2. Screening Levels used for Comparison in Removal Assessment Report

	0	J		_	
	Source:	R9 PRG RSLs for Residential Soil Use for Comparison in RSE Report	R9 PRG ISLs for Industrial Soil Used for Comparison in RSE Report	R9 PRGs for Residential Soils	R9 PRGs for Industrial Soils
	Date:	Referenced on 12/9/2004	Referenced on 12/9/2004	Distributed Oct, 2004	Distributed Oct, 2004
	Units:	mg/kg	mg/kg	mg/kg	mg/kg
S	Benz(a)anthracene	0.621	2.11	0.62	2.1
Hydrocarbons	Benzo(a)pyrene	0.0621	0.211	0.062	0.21
	Benzo(b)fluoranthene	0.621	2.11	0.62	2.1
	Benzo(k)fluoranthene (*California-Modified)	0.378	1.28	6.2 (*0.38)	21 (*1.3)
Polynuclear Aromatic (PAHs)	Chrysene (*California-Modified)	3.78	12.8	62 (*3.8)	210 (*13)
Aro	Dibenz[a,h]anthracene	0.0621	0.211	0.062	210
ear	Fluoranthrene	2290	22000	2300	22000
unc	Indeno[1,2,3-cd]pyrene	0.621	2.11	0.62	21
oly	Phenanthrene	NSA	NSA	NSA	NSA
	Pyrene	2320	29100	2300	29000

When compared to the Region 9 PRGs, sample SO-SW exceeds the industrial soil screening level for Benz(a)anthracene, Benzo(a)pyrene, Benzo(k)flouranthene, Dibenz[a,h]anthracene, and Indeno[1,2,3-cd]pyrene; and also exceeds the residential soil screening level for Benzo(b)fluoranthene. Only Benzo(a)pyrene is exceeded by an order of magnitude (2.8 mg/kg in the sample against an industrial

Page 6 of 24

⁵ See Code of Federal Regulations: 40 CFR §261.24(a)

PRG of 0.211 mg/kg) while the remaining exceedences are within a range of 150% to 300% of the PRG value.

Section 3.2 of the 2004 Removal Assessment Report for the Seven Out Tank Site quotes the EPA Region 9 PRG website⁶ to provide the following explanation of why this comparison was made:

PRGs "are risk-based concentrations that are intended to assist risk assessors and others in initial screening-level evaluations of environmental measurements. The PRGs contained in the Region 9 PRG Table are generic; they are calculated without site specific information". The website also states that "PRGs should be viewed as Agency guidelines, not legally enforceable standards. They are used for site 'screening' and as initial cleanup goals, if applicable. PRGs are not de facto cleanup standards and should not be applied as such. However, they are helpful in providing long-term targets to use during the analysis of different remedial alternatives."

It should be noted that PRGs (e.g., RSLs) are used to narrow down the list of detected chemicals that need further evaluation for health risk which then is used to help determine the need for remedial action. For EPA Removal sites, comparison with RMLs serve to complete this further evaluation step. Screening levels that are used to evaluate sites for an emergency or a time critical removal action are typically higher than the PRG value and have been referred to as "Removal Action Levels" (RALs) or "Removal Management Levels" (RMLs) (Ref. 16). These values are similar to PRGs in that they are not site-specific and not enforceable, but are different in that they are used to provide guidance for initiating an action. Table 3 compares the most recent version of RMLs to the most recent version of RSLs (Ref. 18):

Table 3. Latest versions of Regional Screening Levels and Removal Management Levels

	ote D. Barest Persons	of megional serve	ing zereis unu z	emoral manager	Ment Bereis
	Source:	RSL for Residential Soils	RSL for Industrial Soils	RML for Residential Soils	RML for Industrial Soils
	Date:	Distributed November, 2013	Distributed November, 2013	Distributed Dec, 2013	Distributed Dec, 2013
	Units:	mg/kg	mg/kg	mg/kg	mg/kg
Suc	Benz(a)anthracene	0.15	2.1	15	210
Hydrocarbons	Benzo(a)pyrene	0.015	0.21	1.5	21
	Benzo(b)fluoranthene	0.15	2.1	15	210
	Benzo(k)fluoranthene	1.5	21	150	2100
omatic (PAHs)	Chrysene	15	210	1500	21000
PA PA	Dibenz[a,h]anthracene	0.015	0.21	1.5	21
Ā	Fluoranthrene	2300	22000	6900	66000
clea	Indeno[1,2,3-cd]pyrene	0.15	2.1	15	210
Polynuclear Aromatic (PAHs)	Phenanthrene	NSA	NSA	NSA	NSA
Po	Pyrene	1700	17000	5200	50000

Page 7 of 24

⁶ http://www.epa.gov/region09Avaste/srund/prg/rndex.htm

When compared to the RMLs for residential and industrial soils, a single RML for residential soil (1.5 mg/kg) is exceeded by Benzo(a)pyrene in sample SO-SW (2.8 mg/kg). Despite exceeding the residential RML by 180%, the concentration is still one eighth of the industrial RML and is merely a single location within an industrial property (it is not representative of the property as a whole). Moreover, PAHs were not detected within the contents of the tanks on-site when samples were collected during EPA's removal assessment in 2004.

1.2.2.3. PAH CONCENTRATIONS IN ABOVE GROUND STORAGE TANKS AT THE SEVEN OUT TANK SITE

PAHs were reported in samples that were taken from tanks at the Site as part of the 2008 removal action. Several of these samples were split for independent analysis by EPA's START contractor, but many of the results were flagged during quality assurance review as estimates of an actual concentration. This may have been due to the relatively low concentrations that were detected in the samples. Tables 4 and 5 present the data from samples that were collected from the tanks during November 2008 (Ref. 11 and Ref. 21):

Table 4. Concentrations of PAHs from Tanks CT-1 and CT-4

	rubic ii co	- teentration	is of 12111s from	Tunks et i	na er i			
		Source:	Tank CT-1	Tank CT-1 (Liquid)		Tank CT-1 (Solid)		
		Sampler:	EPA START Contractor Tetra Tech (split)	RP Group Contractor Winter Environmental	EPA START Contractor Tetra Tech (split)	RP Group Contractor Winter Environmenta I	RP Group Contractor Winter Environmental	
		Date:	11/11/2008	11/11/2008	11/11/2008	11/11/2008	11/11/2008	
		Units:	mg/L	mg/L	mg/kg	mg/kg	mg/kg	
suc	Benz(a)anthr	acene	ND	0.0346 J	ND	ND	0.66 J	
arb	Benzo(a)pyre	ene	ND	0.0262 J	ND	ND	0.54 J	
Hydrocarbons	Benzo(b)fluo	ranthene	ND	0.0341 J	ND	ND	0.69 J	
	Benzo(k)fluo	ranthene	0.0045 J	0.0287 J	ND	0.67 J	1.1 J	
omatic (PAHs)	Chrysene		0.0089 J	0.0463 J	ND	0.57 J	1.2 J	
Polynuclear Aromatic (PAHs)	Dibenz[a,h]a	nthracene	ND	ND	ND	ND	ND	
	Fluoranthren	ne	0.027 J	153	28 J	1.3 J	2.7 J	
	Indeno[1,2,3	-cd]pyrene	ND	0.0147 J	ND	ND	ND	
ynu	Phenanthren	ie	0.011 J	221	54 J	1.8 J	1.6 J	
Pol	Pyrene		0.0071 J	88.8	ND	ND	1.4 J	

		Source:	Tank CT-	(Liquid)	Tank CT-5 (Solid)			
		Sampler:	EPA START Contractor Tetra Tech (split)	RP Group Contractor Winter Environmental	EPA START Contractor Tetra Tech (split)	EPA START Contractor Tetra Tech (split duplicate)	RP Group Contractor Winter Environmental	
		Date:	11/11/2008	11/11/2008	11/11/2008	11/11/2008	11/11/2008	
		Units:	mg/L	mg/L	mg/kg	mg/kg	mg/kg	
Hydrocarbons	Benz(a)anthracene		ND	ND	10 J	17 J	ND	
	Benzo(a)pyrene		0.0060 J	ND	ND	ND	ND	
	Benzo(b)fluor	anthene	0.01 J	ND	ND	24 J	ND	
Hyd	Benzo(k)fluora	Benzo(k)fluoranthene		ND	ND	19 J	0.59 J	
Polynuclear Aromatic (PAHs)	Chrysene		0.017 J	ND	25 J	ND	0.63 J	
	Dibenz[a,h]an	Dibenz[a,h]anthracene		ND	ND	ND	ND	
	Fluoranthrene)	0.037 J	0.0032 J	95 J	130 J	2.8 J	
	Indeno[1,2,3-	cd]pyrene	ND	ND	ND	ND	ND	
ynu	Phenanthrene	2	0.0099 J	ND	55 J	78 J	2.3 J	
Pol	Pyrene		ND	0.00305 J	14 J	24 J	0.8 J	

Upon initial inspection, it appears that the sludge in Tank CT-5 was the only potential source of PAHs (the 250 gallons of sludge in tank CT-5 represented less than 1/25 of the tank's total contents and less than 1/2,000 of all waste at the Site) but the values were difficult to discern and could only be estimated. Split samples were analyzed by two separate laboratories using the same EPA extraction methods (SW-846 3510C) and analysis methods (SW-846 8270C)⁷. Discrepancies between split samples were not consistent and values within the same sample could not be repeated (as evidenced by the duplicate sample for CT-5-Solid) which indicates a high level of interference within the sample itself.

Not represented in Tables 4 and 5 are samples that EPA collected from the tanks as of the 2004 RSE. No PAHs were detected in these 2004 tank samples and thus PAHs were not identified as a contaminant of concern at the Site. The contaminants of concern that were cited in EPA's 2007 Enforcement Action Memorandum included: acetone, benzene, sulfuric acid, sodium hydroxide, D002 hazardous wastes (corrosives), and used oil.

1.2.3. Initial Site Recommendation

Additional sampling was recommended to delineate the potential contaminants in the drainage pathway that may have been released from the Site. Also, a detailed and up-to-date drainage path evaluation was recommended to determine whether previous determinations of runoff behavior from the Site were either inaccurate or have changed.

⁷ SW-846 is an EPA publication titled *Test Methods for Evaluating Solid Waste, Physical/Chemical Methods.* More information on SW-846 methods is available at: http://www.epa.gov/waste/hazard/testmethods/sw846/index.htm ⁸ Resource Conservation and Recovery Act (RCRA) waste code D002 identifies corrosives with a pH less than or equal to 2 or greater than or equal to 12.5 as characteristic hazardous wastes (40 CFR §261.22)

1.2.4. ADDITIONAL ACTIVITIES

1.2.4.1. Review of Concerns at Ruskin Elementary School

Concerns identified by the community representatives had included illnesses and surface waters at the Ruskin Elementary School in Ware County. OSC Huyser visited the Ruskin Elementary School on September 5, 2013 and observed that the school is in a remote location, it is relatively distant from the Seven Out Tank Site (more than 5.5 miles), and there were no visible surface water contaminants or potential sources of contamination (additionally, no mobilized groundwater contamination has been suspected or attributed to the Site and no groundwater wells exist at-, or are used by-, the school). OSC Huyser informed representatives from Ware County Schools that there is no available information to suggest that the Ruskin Elementary School has been impacted by the Seven Out Tank Site. Assistance regarding any other health or environmental concerns at the school can be communicated through agencies of Ware County and the State of Georgia.

1.2.4.2. Removal of Recyclable Materials from Seven Out Tank Site

On October 30, 2013, OSC Huyser was contacted by an individual stating that he had been hired by the owner of Seven Out, LLC to dismantle and recycle the tanks at the Site. The recycler was requesting information about necessary permits or other approvals to initiate the work. OSC Huyser informed the caller that EPA's work at the Site had been completed and there was no reason to believe that contaminated materials remained at the Site; but that this did not relieve the recycler from responsibility for securing any applicable city, county, or state permits for the work, or from responsibility for reporting spills or discharges that may be caused or discovered.

1.2.4.3. Public Availability Session

EPA hosted a public availability session at Waycross City Hall on the evening of November 14, 2013, to discuss the history of EPA's cleanup with the Seven Out Tank Site and receive comments from the community on issues that individuals felt needed to be addressed. EPA was joined by GAEPD and Georgia DPH to cover a wider range of expertise and other concerns. GAEPD was able to address cleanup activities related to other nearby facilities such as the CSX Rice Yard and the former manufactured gas plant (MGP) on Glenmore Avenue which was formerly addressed by Atlanta Gas Light. DPH was able to address the health data review and health consultation that was prepared in response to community requests beginning in July, 2013.

The event was attended by approximately 75 residents, interested parties from the surrounding area, media, and representatives of various government and non-government organizations. Both EPA and GAEPD discussed sampling events that would be conducted in the near future to evaluate whether contamination from the Seven Out Tank facility and the CSX Rice Yard, respectively, had migrated to the surrounding neighborhood.

2.0 Francis Street Site Assessment - Removal Site Evaluation

2.1. ADDITIONAL SAMPLING

The additional sampling proposed by EPA focuses on the drainage pathway from the Site and evaluates whether contaminants of concern in sample SO-SW from the 2004 RSE have migrated downstream.

2.1.1. Incremental Sampling Method

Incremental Sampling Method (ISM) (ITRC, 2012) was selected to provide a high quality representative sample of mean contaminant concentrations in distinct sections of the drainage path. The method utilizes a large quantity of sample locations ("aliquots") to provide a representative sample ("decision unit") from a specific area: the aliquots are then mixed and processed and analyzed in the laboratory. Due to the increased density of aliquots and systematic mixing ("homogenizing") of the material, results from ISM samples can yield a greater degree of confidence when compared to other sampling methods such as discrete sampling (i.e. "grab sampling") or composite sampling (i.e. "representative sampling", see Ref. 6).

As employed on the Francis Street Site Assessment, the ISM approach provided a clear picture of PAH concentrations downstream of the Site and the ability to compare those to PAH concentrations upstream of the drainage path. The "decision units" (DUs) identified by EPA were selected based on criteria that included:

- Location relative to drainage path:
- Influence of potential contaminant sources;
- Use of area and contributing stormwater sources
- Access to waterway; and,
- Condition or features of waterway.

Each decision unit is characterized by both comparable features with neighboring units and distinct elements designed to illustrate contaminant migration through the drainage path. Drainage from the Site enters a ditch along the south border of the property via both a drainage pipe and overland flow. The ditch flows several hundred feet through an industrial area and discharges to a canal. The canal flows through a residential neighborhood, including a public park, and then underground as it passes the main city center. Based on this information and the above criteria, five decision units were identified for this project:

2.1.1.1. Decision Unit 01 - DU01

DU-01 is within the drainage ditch but located upstream of the Seven Out facility. This DU was selected to evaluate whether upstream sources of PAHs were being transported into the drainage ditch.

⁹ The ISM term for "decision unit" refers to a representative sample specific area which is selected for a set of features that are generally uniform throughout the area itself.

2.1.1.2. DECISION UNIT 02 - DU02

DU-02 is a short section of ditch located at the southeast corner of the Seven Out facility; this short ditch transports drainage water from the east side of the facility to the larger drainage ditch along the south boundary of the property. This DU was selected to evaluate whether noticeably different concentrations of PAHs could be detected at the immediate outfall.

2.1.1.3. DECISION UNIT 03 - DU03

DU-03 is within the drainage ditch section that receives stormwater from the facility, beginning downstream of the intersection of DU-01 and DU-02 but ending before the intersection with a drainage ditch from the CSX Rice Yard property near S Nichols Street. The size, condition, and features of DU-03 are similar to DU-01 and DU-02. This DU was selected for two reasons: 1) measure PAH concentrations in the ditch prior to entering the canal; and, 2) to evaluate whether downstream concentrations of PAHs were measurably higher than upstream concentrations immediately adjacent to the Site.

2.1.1.4. DECISION UNIT 04 - DU04

DU-04 is located within a branch of the city drainage canal but is upstream of the intersection (i.e. "confluence") of the drainage ditch with the canal. The section begins at Alpha Street, then continues north past Margaret Street where it then ends before (on the south side of-) a double railroad bridge over the canal; the confluence with the drainage ditch occurs on the opposing side (the north side-) of the railroad bridge. This DU was selected to evaluate whether upstream sources of PAHs were being transported into the canal.

2.1.1.5. DECISION UNIT 05 - DU05

DU-05 is located within the canal and is downstream of the confluence with the drainage ditch. The section begins at the confluence with the drainage ditch then ends at Folks Street, and includes the section of the canal that traverses through Mary Street Park. This DU was selected for two reasons: 1) to evaluate whether downstream concentrations of PAHs were measurably higher than upstream concentrations in the canal after the confluence with stormwater drainage water from the Site; and, 2) this section represents the most probable location for direct contact exposure to canal sediments by residents in the community.

2.1.2. Sampling Design

2.1.2.1. 30 ALIQUOTS FROM EACH DECISION UNIT

A total of 30 aliquots (i.e. sample locations) were collected from each DU at a depth of 0-3 inches utilizing a stainless steel incremental sampling tool equipped with a plunger that is designed to extract a uniform core at each point. Aliquots were collected strictly from sediment below the water surface, at the left, center, and right of the waterway; this was done at 10 stations along each DU (i.e. 3 points x 10 stations = 30 aliquots)¹⁰. Each core was placed into a stainless steel bowl, mixed (homogenized) on-site, and the mixture was transferred into a 32-ounce glass jar.

2.1.2.2. ANALYTICAL METHOD SW-846, 8270D

The samples were transported to a laboratory where each was dried, sieved¹¹, mixed, and subsampled according to ISM protocol. The samples were then analyzed for PAHs by Selected Ion Monitoring (SIM) using the EPA Test Methods for Evaluating Solid Waste, Physical Chemical Methods (SW-846) Method 8270D.

Selection of analyses to determine which chemicals were contained within the samples was based on prior knowledge of materials discovered at the Seven Out Tank Site and suspected for release to the drainage pathway. The PAH family within the group of Semi-Volatile Organic Compounds (SVOCs) were selected based on the concerns that elevated levels of PAHs found in sample SO-SW during the 2004 EPA RSE and the sludge contents of tank CT-5 prior to the 2008-2009 removal action demonstrated the presence of these compounds within the waste process of the facility.

2.1.2.3. Sample Collection Traversing Upstream

Samples were taken in an upstream direction, beginning at the farthest point downstream (at Folks Street in DU05) and proceeding in the opposite direction of surface water flow. This was done to minimize the possibility that sediments stirred by sampling activities could be transported and impact samples in a separate decision unit.

2.1.2.4. ISM REPLICATE/TRIPLICATE PROTOCOL

The sample process was simultaneously repeated in two decision units (DU03 and DU04) a total of three times for each (ex. DU03A, DU03B, and DU03C) according to ISM protocols. ISM refers to these

Page **13** of **24**

 $^{^{10}}$ Sediment sample FSA-SD-DU02 was collected with only 5 stations (3 points x 5 stations = 15 aliquots) due to the short length of the decision unit; DU02 was only approximately 35 feet long

^{11 10-}mesh, 2 millimeter sieve

repeated samples as "replicates" and they are used to calculate confidence (Ref. 8) and precision¹² in the analytical results. Not all decision units must undergo replicate sampling; it is only necessary to select a representative portion of the decision units that will provide an adequate illustration of sampling repeatability across varying conditions and analyte (i.e. "contaminant") concentrations. DU03 and DU04 were selected for replicate sampling because they would be expected to yield the highest and lowest concentrations of PAHs, respectively, if it were discovered that PAH contaminants were migrating downstream from the Site.

2.1.2.5. Samples at Seven Out Facility and Confluence with Canal

Additional samples were collected to characterize known and potential contaminant concentrations at the Seven Out property and downstream of the Site. Sediment sample FSA-SC-CO was collected near the intersection ("confluence") of the drainage ditch and the canal to evaluate whether elevated concentrations of PAHs could be found in this immediate location. This sample consisted of a 5-point composite 13. Although this method is not the same as the ISM samples taken from other decision units, this sample was processed in the laboratory in the same manner as the ISM samples because it was collected from the same sediment media and must be handled in the same manner in order to provide adequately comparable results.

Soil sample FSA-SF-SCW was collected outside the south border of the tank farm at the Seven Out property in the same location as sample SO-SW from the 2004 EPA RSE. Soil sample FSA-SF-CT was collected in a concrete trench at the northeast corner of the Seven Out property where rainwater traverses before draining through a pipe that discharges to the ditch at the southeast corner of the property. Both FSA-SF-SCW and FSA-SF-CT were collected as 5-point composite samples at depths of 0-6 inches.

2.1.2.6. Data Quality Assurance Samples

Finally, specific data-quality samples were collected as part of the investigation process to ensure that no sources of contamination were inadvertently introduced as part of the sample collection or analysis processes (known as "cross-contamination"). These samples are designed to provide a high level of quality control (U.S. EPA, 2013b) when collecting field samples and are part of an overall quality assurance process for the project.

¹² Using Relative Standard Deviation (RSD) (aka "coefficient of variation") which expresses standard deviation as a percentage. $RSD\% = \frac{s}{\bar{X}} \times 100$ where the standard deviation $s = \sqrt{\sum_{t=1}^{n} \frac{(X_t - \bar{X})^2}{n-1}}$ using X_t = the measured value of the replicate, \bar{X} = the mean of the measurements, and n = the number of replicates.

¹³ The "composite" sample means that 5 smaller samples from that location were mixed into a single sample to provide a representation of the actual concentration; this is similar but not the same as ISM

2.2. REVIEW OF ADDITIONAL SAMPLING DATA

2.2.1. Discussion of Comparison Values

Sample results were compared with a series of generic criteria including RSLs (U.S. EPA, 2013c), RMLs (U.S. EPA, 2013a), and GAEPD Type 1 Soil Risk Reduction Standards¹⁴ ("GA Type 1 RRS").

2.2.1.1. Discussion of Comparison Values: RSLs and RMLs

RMLs and RSLs are generated with "default exposure parameters and factors for Reasonable Maximum Exposure (RME) conditions for long-term chronic exposures." (U.S. EPA, 2013d) so these numbers can often be more conservative than a site-specific action level or cleanup criterion where concentrations are not widespread and observable exposures are not chronic – such is the case at the Seven Out Tank facility, where surface contamination is localized no occupancy or observable exposures are presently documented. During removal site assessments in EPA Region 4, the generic RML tables are commonly referenced as part of the process in evaluating whether to take a removal action. However, comparison with generic RMLs are just part of the initial evaluation process; only the factors listed in the National Oil and Hazardous Substances Pollution Contingency Plan (NCP)¹⁵ can be used to determine the appropriateness of a removal action. Once a decision has been made to undertake a response or removal action, cleanup criteria for contaminants of concern are selected or calculated based on site-specific parameters. The generic RSL tables, by comparison, are used in the preliminary phase of an investigation to evaluate whether a compound has been detected in the environment at a concentration that may be elevated, thus noting that it may be a contaminant of concern; the generic RSLs should only be regarded as an initial *screening* tool and should not be interpreted as a de-facto cleanup standard.

2.2.1.2. Discussion of Comparison Values: GA Type 1 RRS

The GA Type 1 RRSs are State regulated cleanup standards used to demonstrate completion of a corrective action under Georgia Rule 391-3-19-.07; the Type 1 standards are designed to "provide for regulated substance concentrations that [will] pose no significant risk on the basis of standardized exposure assumptions and defined risk levels for residential properties." [Ga. Comp. R. & Regs. R. 391-3-19-.07(6)(a)]. Using the GA Type 1 RRSs in evaluation of this Site is particularly applicable because these were the approved cleanup standards utilized during a remedial action conducted by the Atlanta Gas Light Company (AGL) and overseen by GAEPD between 1997 and 2002 to address contamination from a MGP Site on Glenmore Avenue in Waycross, GA (Ref. 20). The cleanup included removal and restoration of sediments in the canal which covered areas both upstream and downstream of the canal sections sampled during this assessment (decision units DU04 and DU05).

Page 15 of 24

¹⁴ Georgia Compilation of Rules and Regulations Rule ("Ga. Comp. R. & Regs. R.") 391-3-19-.07(6)

¹⁵ See 40 CFR §300.414(b)(2)(i-vii)

2.2.2. RESULTS FROM SOIL SAMPLES OUTSIDE SOUTH CONTAINMENT WALL

Results show that the soil outside the south perimeter of the tank farm at the Seven Out facility from which sample SO-SW was collected during the EPA RSE in 2004 have remained relatively unchanged:

Table 6. Comparison of Soil Samples in Same Area from 2004 to 2013

		Source:	Soil sample SO-SW Taken by EPA Near South Perimeter of Seven Out Site	Soil sample FSA-SF-SCW ¹⁶ taken by EPA in same location as SO-SW
		Date:	Collected 8/26/2004	Collected 12/19/2013
		Units:	mg/kg	mg/kg
Suc	Benz(a)anthrace	ene	2.4	1.9
Hydrocarbons	Benzo(a)pyrene		2.8	2.0
lroc	Benzo(b)fluoranthene		1.8	3.1
	Benzo(k)fluoranthene		3.2	1.1
omatic (PAHs)	Chrysene		3.1	2.6
Polynuclear Aromatic (PAHs)	Dibenz[a,h]anth	racene	0.65	0.43 J+
F A	Fluoranthrene		4.6	5.1
clea	Indeno[1,2,3-cd]pyrene	3	1.7
λuα	Phenanthrene		1.8	3.6
<u>S</u>	Pyrene		4	5.2

The concerns regarding contamination at the Site are generally related to this location and the possibility that contaminants, particularly Benzo(a)pyrene, may migrate off-Site into residential areas. Samples FSA-SF-SCW and FSA-SF-SCW-DUP confirm that concentrations of PAHs have persisted in this location for several years. Concentrations of Benzo(a)pyrene in these samples meet or exceed both the EPA generic RML for Residential Soils (1.5 mg/kg) and the Georgia Type 1 RRS (1.64 mg/kg) but do not exceed the EPA generic RML for Industrial Soils (21 mg/kg) or a calculated value for the Georgia Type 3 RRS (7.84 mg/kg) ¹⁸ for non-residential use areas.

Both residential and industrial generic risk calculations are based on assumptions of frequent and chronic ("long term") exposure. A site-specific calculation on actual exposure conditions where direct contact exposures are not frequent can be expected to yield action levels that are far greater than the generic values.

¹⁶ Average of FSA-SF-SCW and FSA-SF-SCW-DUP

 $^{^{17}}$ Type 3 standards are used to "provide for regulated substance concentrations that pose not significant risk on the bases of standardized exposure assumptions and defined risk levels for the non-residential use scenario," [Ga. Comp. R. & Regs. R. 391-3-19-.07(8)(a)].

¹⁸ The surface soil Type 3 RRS for Benzo(a)pyrene of 7.84 mg/kg was calculated using requirements of Type 3 Standards for soils listed in Ga. Comp. R. & Regs. R. 391-3-19-.07(8)(d)(2)(ii) supplemented with chemical-specific properties for Benzo(a)pyrene listed in Part 5 of U.S. EPA. Soil Screening Guidance: Technical Background Document and User's Guide. EPA/540/R-95/128. May, 1996

2.2.2.1. Soil Samples: Direct Contact Exposure Risk

The soil represented in samples SO-SW and FSA-SF-SCW consist of an area no greater than 200 square feet, which is less than 0.5% of the non-paved surfaces on the property and less than 0.15% of the total property surface. Concentrations in these samples are therefore indicative of only a small area and are not representative of average surface concentrations at the Site. The soil in this section is also heavily vegetated, further impeding both risk of exposure and migration. In 2005, GAEPD completed a preliminary assessment of the Site (Ref. 2) and reviewed population data, threatened or endangered species, site conditions, and available data from EPA's 2004 RSE. Part of GAEPD's conclusion addressed the soil contamination that was found and determined that soil exposure was not considered a serious threat because no primary targets could be identified.

2.2.2.2. Soil Samples: Groundwater Contamination Risk

Migration of contaminants to groundwater is also not considered a serious threat; this is due to the relatively low concentration, small size of the source area, and low mobility of PAHs compared with the depth and distance of ground water wells in the area. PAHs are only moderately soluble in water (i.e "hydrophobic") and have a high affinity for organic carbon, which means that they bind to the soils and are less likely to infiltrate the soil to the groundwater. PAHs are more likely to be transported with erosion of surface soils through the surface water flow and drainage. The City of Waycross public water supply is provided by groundwater wells that exceed depths of 500 feet and are greater than 1300 feet from the site. GAEPD followed the 2005 Preliminary Assessment with a SI in 2006 (Ref. 3) which concluded that no targets exist in the groundwater aquifer and risk of groundwater contamination from the site appears negligible.

2.2.2.3. EPA RECOMMENDATION FOR SURFACE SOIL: NO ACTION

EPA agrees with GAEPD's conclusions from the 2006 SI (Ref. 3) and, based on sample results collected in December, 2013, determines that the conclusions remain applicable at this time. Due to the lack of threat posed by the soils represented in samples SO-SW and FSA-FS-SCW, excavation or other response action to address this area is not necessary and is not recommended.

2.2.3. RESULTS FROM SEDIMENT SAMPLES IN DRAINAGE DITCH SOUTH OF SITE

Sampling in the drainage ditch at the south border of the Site and the nearest branch of the city drainage canal provides information on whether PAHs from the Site are being transported downstream. Results show that the concentrations of PAHs in the sediments of the drainage ditch are significantly lower than those found in soils of 200 square foot area of concern outside the south containment wall of the Site:

0.79

0.34

0.48

0.78

0.32

0.28

0.11 J

0.38

Polynuclear Aro

Fluoranthrene

Phenanthrene

Pvrene

Indeno[1,2,3-cd]pyrene

	Source:	Sediment sample FSA-SD-DU01 taken by EPA in drainage ditch – upstream of Site	Sediment sample FSA-SD-DU02 taken by EPA in drainage ditch – near outfall from Site drain	Sediment sample FSA-SD-DU03-AVG ¹⁹ taken by EPA in drainage ditch – downstream of Site
	Date:	Collected 12/19/2013	Collected 12/19/2013	Collected 12/19/2013
	Units:	mg/kg	mg/kg	mg/kg
Benz(a)anthrace	ene	0.37	0.32	0.18
Benzo(a)pyrene		0.58	0.39	0.29
Benzo(b)fluorar	thene	1.5	0.76	0.66
Benzo(k)fluoran	thene	0.43	0.24	0.21
Chrysene		0.51	0.42	0.26
Dibenz[a,h]anth	racene	0.15	0.087	0.076
	Benz(a)anthrace Benzo(a)pyrene Benzo(b)fluoran Benzo(k)fluoran Chrysene	Date: Units: Benz(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene	Sediment sample FSA-SD-DU01 taken by EPA in drainage ditch – upstream of Site Collected 12/19/2013 Units: mg/kg Benz(a)anthracene 0.37 Benzo(a)pyrene 0.58 Benzo(b)fluoranthene 1.5 Benzo(k)fluoranthene 0.43 Chrysene 0.51	Sediment sample FSA-SD-DU01 taken by EPA in drainage ditch - upstream of Site Collected 12/19/2013 Units: mg/kg mg/kg

Table 7. Results of Sediment Samples from Drainage Ditch at South Border of Site

None of the constituents measured in samples taken from DU01, DU02, or DU03 exceed either the residential or industrial EPA generic RMLs nor do they exceed the Georgia Type I or Type 3 RRSs. EPA generic RSLs for residential soils are exceeded for Benz(a)anthracene (0.15 mg/kg), Benzo(b)fluoranthene (0.15 mg/kg), Dibenz[a,h]anthracene (0.015 mg/kg), and Indeno [1,2,3-cd]pyrene (0.15 mg/kg) while EPA generic RSLs for industrial soils are exceeded for Benzo(a)pyrene (0.21 mg/kg). As stated in section 2.2.1.1., generic RSL values are used in the preliminary phase of an investigation to evaluate whether a compound has been detected in the environment at a concentration that may be elevated and are only to be regarded as an initial screening tool and should not be interpreted as a de-facto cleanup standard. Since RMLs are not exceeded, the reported levels are all below or within the EPA target cancer risk range based on residential soil (i.e., unrestricted use).

0.58

0.6

0.23

0.021

The ditch consists of steep banks, is heavily vegetated, and there is no indication the ditch is accessed regularly; therefore a site-specific calculation on actual exposure conditions where direct contact exposures are not frequent can be expected to yield action levels that are far greater than the generic values²⁰.

2.2.3.1. DITCH SAMPLES: DECREASING CONCENTRATIONS DOWNSTREAM

Comparison of the ditch samples suggests a trend of decreasing PAH concentrations from the "upstream" sample in DU01 to the intersection with DU02 and again to the downstream sample in DU03. This decreasing concentration trend downstream through the three decision units occurs in 11 of

¹⁹ Average of FSA-SF-DU03-A, FSA-SF-DU03-B, and FSA-SF-DU03-C

²⁰ As stated previously, generic RSL and RML values for both residential and industrial soils are based on frequent and chronic (long term) exposure assumptions

the 17 analytes²¹ (a decreasing trend downstream from DU01 to DU03 occurs with higher concentrations in the middle at DU02 in the remaining 6 analytes²²). This might suggest that the occurrence of PAHs in the drainage ditch is primarily contributed by a source other than the Seven Out Tank Site. PAHs are associated with several common sources, including but not limited to, the incomplete combustion of fuels such as gasoline and diesel. The upstream source of storm water to the drainage ditch includes contributions from Francis Street, the adjacent commercial district, and a portion of the northeast corner of the CSX Rice Yard facility.

2.2.3.2. DITCH SAMPLES: EVALUATION OF DITCH ELEVATION PROFILE

EPA visited the Site on February 18, 2014, to survey the drainage ditch elevation profile (U.S. EPA, 2014) and determine whether the gradient in the ditch would allow rainwater from the Seven Out Tank Site to flow "upstream" into DU01. The survey indicated that the elevation drop from the beginning of DU01 to near the intersection with DU02 (over a distance of approximately 270 feet) was effectively zero with a range in elevation between the two endpoints of only 3 inches. In comparison, the elevation drop of DU03 from the beginning near DU02 to the culvert under S Nichols Street (over a distance of approximately 830 feet), was 3.3 feet (0.4% grade or 0.23-degrees). The shallow grade of DU01 means that drainage from the Site through the outfall in DU02 could potentially flow into DU01 and sediments could settle in this section of the ditch.

Surface water runoff from the Seven Out facility or general runoff from the surrounding area could be all be contributing factors to concentrations of PAHs in the "upstream" decision unit but no conclusion can be made that either is the primary source of PAHs in the decision unit area.

2.2.3.3. EPA RECOMMENDATION FOR DRAINAGE DITCH: No Action

Due to the lack of threat posed by the sediments represented in samples FSA-SD-DU01, FSA-SD-DU02, and FSA-SD-DU03, excavation or other response action to address the ditch is not necessary and is not recommended.

2.2.4. RESULTS FROM SEDIMENT SAMPLES IN BRANCH OF CITY DRAINAGE CANAL

Sampling in the drainage canal provides information on whether PAHs that were measured in the drainage ditch are being transported into residential areas. Results show that the concentrations of PAHs in the sediments of the drainage canal are significantly lower than those found in both the soils of 200 square foot area of concern outside the south containment wall of the Site *and* the drainage ditch at the south border of the Site:

 $^{21}\ Acenaphthene, Acenaphthylene, Antrhacene, Benzo(a) anthracene, Benzo(a) pyrene, Benzo(b) fluouranthene, Benzo[g,h,i] perylene, Benzo(k) fluoranthene, Chrysene, Dibenz[a,h] antrhacene, and Indeno[1,2,3-cd] pyrene$

²² 2-Methylnaphthalene, Fluoranthene, Fluorene, Naphthalene, Phenanthrene, and Pyrene

Table 8. Results o	f Sediment Sam	ples from I	Drainage Canal
I HOLE OF ILEBRIES O	Section Street	Deco II our z	The contract of the contract o

	Source:	Sediment sample FSA-SD-DU04-AVG ²³ taken by EPA in canal – upstream of FSA- SD-CO Collected 12/19/2013	Sediment sample FSA-SD-CO taken by EPA in canal – confluence ²⁴ of ditch and canal Collected 12/19/2013	Sediment sample FSA-SD-DU05 taken by EPA in canal – downstream of FSA- SD-CO Collected 12/19/2013
	Units:	mg/kg	mg/kg	mg/kg
ns	Benz(a)anthracene	0.019 J	0.0045 J	0.013 J+
arbc	Benzo(a)pyrene	0.027 J	0.006	0.015 J+
Polynuclear Aromatic Hydrocarbons (PAHs)	Benzo(b)fluoranthene	0.044 J	0.01	0.02 J+
	Benzo(k)fluoranthene	0.014 J	0.003 J	0.008 J+
	Chrysene	0.024 J	0.0068	0.016 J+
	Dibenz[a,h]anthracene	0.0062 J	0.0048 U	0.0031 J+
	Fluoranthrene	0.032 J	0.01	0.02 J+
	Indeno[1,2,3-cd]pyrene	0.025 J	0.0051	0.011 J+
Žu.	Phenanthrene	0.0104	0.006	0.0061 J+
Pol	Pyrene	0.036 J	0.014	0.027 J+

None of the constituents measured in samples taken from DU04, DU05, or the confluence (intersection) with the drainage ditch exceed either the residential or industrial EPA generic RMLs nor do they exceed the Georgia Type I or Type 3 RRSs. EPA generic RSLs for residential soils were exceeded only for Benzo(a)pyrene (0.015 mg/kg). As stated in section 2.2.1.1. and repeated in section 2.2.3., generic RSL values are only to be regarded as an initial *screening* tool and should not be interpreted as a de-facto cleanup standard.

2.2.4.1. Canal Samples: Discussion of Distinction Between Dry Soil and Sediment

When the samples were collected, water in the canal was observed at widths from 6-10 feet, average depths of 6-24 inches and surface water flow at approximately 0.5 feet per second. It flows through residential neighborhoods, including Mary Street park, where it is reported that children regularly play in the water. Even under these circumstances, a site-specific calculation on actual exposure conditions where direct contact exposures are not frequent can be expected to yield action levels that are far greater than the generic values for at least two reasons: 1) The generic RMLs and RSLs are based on frequent and long-term exposures requiring direct contact with the contaminant and despite the proximity of the residences and the activity in the waterway, the site-specific conditions do not amount to the frequent contact assumptions that are made in the generic calculations; and, 2) Exposure conditions in the generic values are calculated for dry surface soils which are used as comparison tools because they are readily available, but do not directly translate to sediment exposure conditions (the water in the canal provides a transport mechanism for contaminants but also provides a protective cover which can reduce exposure incidences to sediments at the bottom).

²³ Average of FSA-SF-DU04-A, FSA-SF-DU04-B, and FSA-SF-DU04-C

²⁴ The "confluence" is the intersection point where drainage water from the ditch enters the canal

2.2.4.2. Canal Samples: GA DPH Health Consultation Site-Specific Calculations

Special Site Assessment Report

A site-specific exposure dose calculation was made by the Georgia Department of Public Health (DPH) Chemical Hazards Program in a Health Consultation (GA DPH, 2013) that was completed to address concerns at the Seven Out facility and Mary Street Park. The calculations were made using analytical data provided by a resident who collected a sediment sample ²⁵ from the canal in the park and sent the sample to be analyzed by a private laboratory ²⁶.

Table 9. Sediment S	Samples	Collected in	Canal by l	EPA and by	Community Group
I wore > 1 Seminorite	Juliopees	Concert in	Culture O y 2	DI II WILL OF	Committee to the

, ,	The second	nection the cultum by Ellis	an of community crossp
	Source:	Sediment sample FSA-SD- DU05 taken by EPA in canal – downstream of FSA-SD-CO	Sediment Sample Collected by Resident ²⁷ in Unnamed Creek at Mary Street Park
	Analytical Method:	8270C SIM	8270C
	Date:	Collected 12/19/2013	Collected 7/3/2013
	Units:	mg/kg	mg/kg
Benz(a)anthracene		0.013 J+	0.556
Benzo(a)pyrene		0.015 J+	ND
Benzo(b)fluoranthene		0.02 J+	0.827
Benzo(k)fluoranthene		0.008 J+	0.398
Chrysene		0.016 J+	0.067
Chrysene Dibenz[a,h]anthracene		0.0031 J+	ND
Fluoranthrene		0.02 J+	0.691
Indeno[1,2,3-cd]pyrene		0.011 J+	ND
Benz(a)anthracene Benzo(b)fluoranthene Benzo(k)fluoranthene Chrysene Dibenz[a,h]anthracene Fluoranthrene Indeno[1,2,3-cd]pyrene Phenanthrene Pyrene		0.0061 J+	0.378
Pyrene		0.027 J+	1.52
	Benz(a)anthrace Benzo(a)pyrene Benzo(b)fluoran Benzo(k)fluoran Chrysene Dibenz[a,h]anth Fluoranthrene Indeno[1,2,3-cd] Phenanthrene	Source: Analytical Method: Date: Units: Benz(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene Chrysene Dibenz[a,h]anthracene Fluoranthrene Indeno[1,2,3-cd]pyrene Phenanthrene	Source: DU05 taken by EPA in canal - downstream of FSA-SD-CO

The results of the sample collected by the resident (Table 9) showed levels of PAHs that were generally higher than those detected in EPA sample FSA-SD-DU05²⁸ although they showed no levels for Benzo(a)pyrene, Dibenz[a,h]anthracene, or Indeno[1,2,3-cd]pyrene above a detection limit of 0.282 mg/kg. As with sample FSA-SD-DU05, none of the constituents measured in sample taken by the resident exceed either the residential or industrial EPA generic RMLs nor do they exceed the Georgia Type I or Type 3 RRSs. EPA generic RSLs for residential soils in the resident's sample were exceeded for Benzo(a)anthracene (0.15 mg/kg) and Benzo(b)fluoranthene (0.15 mg/kg).

²⁵ This sample and the laboratory analysis that was obtained is useful for comparative purposes only. The sample was not collected under any sampling and analysis plan or a quality assurance project plan and therefore the results cannot be validated for decision-making purposes.

²⁶ Ana-Lab Corp., Kilgore, TX

 $^{^{27}}$ Ana-Lab Corp., Project # 619468, Report of Soil Sample Results from Mary Street (Folks) Park, Waycross, GA, 07/03/2013.

²⁸ Note that all results in Table 9 for FSA-SD-DU05 have been flagged with a "J+"; this means that the analyte was positively identified but the associated value is the approximate concentration of the analyte in the sample and may be biased high

In order to account for the mixture of PAHs that were detected, DPH calculated an estimated *cumulative* exposure dose (Ref. 5) as well as an estimated *cumulative* cancer risk that children may have from exposure in the park based on very conservative exposure scenarios. DPH's findings reported that the exposure dose and cancer risk in these scenarios was significantly lower than the assumptions that are used by EPA to calculate generic RSL values.

The absence of Benzo(a)pyrene, Dibenz[a,h]anthracene, or Indeno[1,2,3-cd]pyrene in the resident's sample compared to their presence in sample FSA-SD-DU05 is inconsequential due to the relatively higher concentrations of the remaining compounds in the resident's sample. The method that is used to calculate a cumulative PAH concentration (known as "Benzo[a]pyrene toxic equivalents" or "BaP-TE") yields a cumulative PAH concentration in sample FSA-SD-DU05 that is six times lower than the equivalent value in the resident's sample. Repeating DPH's calculations using results from sample FSA-SD-DU05 would provide exposure dose and cancer risk values that are even lower than the initial findings²⁹.

2.2.4.3. Canal Samples: Decreasing Concentrations Downstream

Comparison of canal samples suggest a trend of decreasing PAH concentrations from the upstream sample in DU04 to the downstream sample in DU05 (concentrations of PAHs at the intersection with the drainage ditch in sample FSA-SD-CO are generally lower than those in both DU04 and DU05).

Although values in FSA-SD-DU05 are less than those in the average of FSA-SD-DU04-(A, B, and C) and is outside the standard deviation for triplicate samples FSA-SD-DU04-(A, B, and C) presented in Table 3 of EPA START Final Letter report (U.S. EPA, 2014), the difference is less than a factor of 10 (an "order of magnitude") and the concentrations are still very low³⁰. Laboratory triplicate analysis performed on sample FSA-SD-DU04-A showed greater variability among the results resulting in a relatively large relative standard deviation (RSD * 13-24%) for the results in samples FSA-SD-DU04-(A, B, and C). By comparison, the relative standard deviation for the results in triplicate samples FSA-SD-DU03-(A, B, and C) from the drainage ditch were much narrower (RSD * 2-6%) which is likely due to the relatively higher concentrations in these samples.

Although Table 9 appears to show a decreasing concentration in PAHs along the downstream direction, the difference between PAH values in DU04 and DU05 is too narrow and no definitive conclusion can be made on this matter.

²⁹ The distinction between *exposure dose* & *cancer risk* and *screening level* & *action level* is critical in this case. Sections 2.2.2., 2.2.3., and 2.2.4.1. point out that site-specific calculations for *screening levels* and *action levels* would be *greater* than generic valued due to less actual exposures than the assumptions used in calculating the generic value. *Screening levels* and *action levels* refer to a comparative value for concentrations of a contaminant in soil. *Exposure dose* and *cancer risks* are different terms that refer, respectively, to the quantity of a contaminant entering a body and resulting cancer risk under specific circumstances and soil concentrations.

³⁰ This is additionally supported by the fact that all results in FSA-SD-DU04-A and FSA-SD-DU05 are flagged with a "J" which means that the analyte was positively identified but the associated value is the approximate concentration of the analyte in the sample; this flag is not uncommon for very low concentrations

2.2.4.4. Canal Samples: Remediation of Canal Was Successful for PAH Removal

Results of the samples presented in Table 9 demonstrate that the remedial action conducted by the Atlanta Gas Light Company between 1997 and 2002 to address contamination from a former MGP Site on Glenmore Avenue successfully removed PAHs in the areas of decision units DU04 and DU05 below the cleanup goal of Georgia Type 1 RRSs. GAEPD has determined that this remedial action is complete and EPA does not object to GAEPD's decision.

2.2.4.5. EPA RECOMMENDATION FOR DRAINAGE DITCH: No ACTION

Due to the lack of threat posed by the sediments represented in samples FSA-SD-DU04, FSA-SD-CO, and FSA-SD-DU05, excavation or other response action to address the canal is not necessary and is not recommended.

2.3. DRAINAGE PATH EVALUATION

EPA's recommendation for additional work in the September 19, 2013 Special POLREP (Attachment 1) included the completion of a detailed and up-to-date drainage path evaluation to determine whether previous statements of runoff behavior from the Site were either inaccurate or have changed. The Drainage Path Evaluation is provided in Appendix 3. The evaluation concluded that observed drainage patterns at the Seven Out Tank Site and surrounding area (within the boundaries of the Site and DU01 through DU05) have not changed since 2004.


3.0 RECOMMENDATION

The additional sampling that was recommended in EPA's Seven Out Tank Site Special POLREP dated September 19, 2013 (Attachment 1) was conducted on December 19, 2013. Prior to sampling the Quality Assurance Project Plan (QAPP) which described the sampling even was evaluated by team members from both GAEPD and Georgia DPH. The QAPP was also distributed to several interested public and private parties identified during the November 14, 2013 public availability session. Sample results were thoroughly reviewed by EPA with supporting reviews by GAEPD and Georgia DPH. Prior to completion of a formal report, the data from the sampling event was distributed to the same group of public and private parties. The purpose of this report has been to document EPA Region 4 ERRB's decision regarding further assessment or removal action at the Francis Street Site or Seven Out Tank Site.

Section 300.415 of the National Oil and Hazardous Substances Pollution Contingency Plan (NCP) lists factors to be considered in determining the appropriateness of a removal action [40 CFR §300.414(b)(2)(i-vii)]. After careful review of the recent and historical data available for the Site, EPA Region 4 ERRB finds that the Francis Street Site and the Seven Out Tank Site do not meet these criteria and that a removal action is not recommended.

EPA did not encounter an indication of additional contaminants or contaminated media that could have been overlooked by the December 19, 2013 sampling event. The sampling design was based on available information of probable compounds and exposure scenarios resulting from the Seven Out Tank Site. Without additional information on actual or potential releases to the environment of contaminants associated with Seven Out Tank, LLC that have not already been evaluated, EPA Region 4 ERRB does not recommend an additional sampling event for RSE purposes.

GAEPD and Georgia DPH have and or will release additional reports or other materials in response to community concerns in Wayeross, Georgia. EPA will continue to support the State of Georgia wherever possible in order to ensure that these concerns are adequately addressed.

GLOSSARY OF ACRONYMS

AGL Atlanta Gas Light Company

BaP-TE Benzo(a)pyrene - Toxicity Equivalent

CO Confluence

CT Concrete trench

DU Decision Unit

DUP Duplicate

EPA U.S. Environmental Protection Agency

ERRB U.S. EPA Region 4 Emergency Response and Removal Branch

FSA Francis Street Assessment

GAEPD Georgia Environmental Protection Division

HW Hazardous waste

ISL Industrial Screening Level

ISM Incremental Sampling Method

J Data validation flag indicating that the analyte was positively identified but the associated

value is the approximate concentration of the analyte in the sample

J+ Data validation flag indicating that the analyte was positively identified but the associated

value is the approximate concentration of the analyte in the sample and may be biased

high

LLC Limited Liability Corporation

mg kg milligrams per kilogram (= 1,000 μg kg)

mg L milligrams per liter

MGP Manufactured Gas Plant

NCP National Oil and Hazardous Substances Pollution Contingency Plan

NL Not listed

OSC On-Scene Coordinator

PAHs Polycyclic Aromatic Hydrocarbons

POLREP Pollution Report

POTW Publicly-Owned Treatment Works

ppm parts per million (= 1 mg kg)

PRG Preliminary Remediation Goal

QAPP Quality Assurance Project Plan

R4 Region 4

RAL Removal Action Level

RME Reasonable Maximum Exposure

RML Removal Management Level

RRS Risk Reduction Standard

RSD Relative Standard Deviation

RSE Removal Site Evaluation

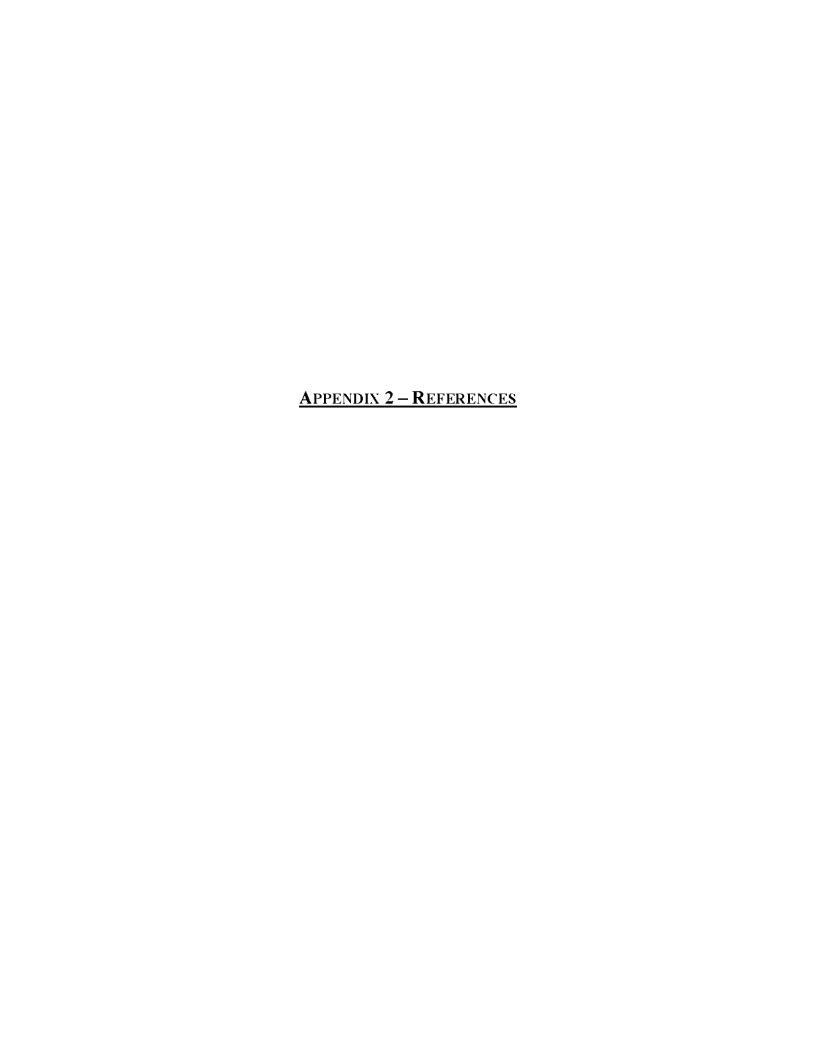
RSL Regional Screening Level

SCW South containment wall

SD Sediment

SF Surface soil

SIM Selected Ion Monitoring


SVOC Semi-Volatile Organic Compounds

U Data validation flag indicating that the analyte was analyzed for but was not detected and

the number reported is the laboratory-derived reporting limit (RL) for the constituent in

the sample

μg kg micrograms per kilogram (= 0.001 mg kg)

REFERENCES

- (1) Georgia DPH. Health Consultation. Seven Out, LLC Facility and Soil Contamination Concerns at Mary Street Park (Folks Park). Waycross, Ware County, Georgia. 2013
- (2) Georgia EPD. Preliminary Assessment. Seven Out LLC Tank. EPA ID # GAN000407811. Waycross, Ware County, Georgia. August 8, 2005.
- (3) Georgia EPD. Site Inspection Report, Seven Out LLC Tank. CERCLIS ID. No. GAN000407811. October, 2006
- (4) Interstate Technology & Regulatory Council (ITRC). *Incremental Sampling Methodology*. ISM-1, 2012.
- (5) U.S. Environmental Protection Agency. *Provisional Guidance for Quantitative Risk Assessment of Polycyclic Aromatic Hydrocarbons*. EPA 600 R-93 089. July, 1993.
- (6) U.S. Environmental Protection Agency. Superfund Program Representative Sampling Guidance, Vol. 1: Soil Interim Final. EPA 540 R-95 141. OSWER Directive 9360.4-10. December, 1995
- (7) U.S. Environmental Protection Agency. Soil Screening Guidance: Technical Background Document and User's Guide. EPA 540 R-95 128. May, 1996.
- (8) U.S. Environmental Protection Agency. Calculating Upper Confidence Limits for Exposure Point Concentrations at Hazardous Waste Sites. OSWER Publication 9285.6-10. December, 2002.
- (9) U.S. Environmental Protection Agency, Region 9. *Preliminary Remediation Goals Table*. October, 2004.
- (10) U.S. Environmental Protection Agency. Removal Assessment Report, Seven Out, LLC Site, Waycross, Ware County, Georgia. December 9, 2004.
- (11) U.S. Environmental Protection Agency. Final Sampling Event Letter Report, Seven Out, Waycross, Ware County, Georgia. November 30, 2009.
- (12) U.S. Environmental Protection Agency. Final CERCLA Removal Action Letter Report, Seven Out, Waycross, Ware County, Georgia. March 2, 2010.
- (13) U.S. Environmental Protection Agency, Region 4. Regional Removal Management Level (RML) Summary Table. December, 2012.
- (14) U.S. Environmental Protection Agency. Field Branches Quality System and Technical Procedures: Field Sampling Quality Control Standard Operating Procedure. SESDPROC-011-R4. February 5, 2013.

- (15) U.S. Environmental Protection Agency, Mid-Atlantic Risk Assessment. *Regional Screening Level (RSL) Summary Table.* May, 2013.
- (16) U.S. Environmental Protection Agency, Mid-Atlantic Risk Assessment. *Regional Screening Level (RSL) Summary Table.* November, 2013.
- (17) U.S. Environmental Protection Agency, Mid-Atlantic Risk Assessment. *Regional Screening Table User's Guide.* November, 2013.
- (18) U.S. Environmental Protection Agency, Region 4. Regional Removal Management Levels (RML) Summary Table. December, 2013.
- (19) U.S. Environmental Protection Agency. Final Assessment Letter Report, Francis Street Site, Waycross, Ware County, Georgia. April 3, 2014.
- (20) Williams Environmental Services, Inc. Compliance Status Report, Volume 1: Waycross MGP Drainage Canal Project. Prepared for Atlanta Gas Light Company. May 24, 2000.
- (21) Winter Environmental. Removal Action Report, Seven Out Tank Superfund Site, Waycross, Georgia. Winter Project No. 08040. Prepared For: Rogers Towers, Attorneys at Law & U.S. EPA Region 4. September 17, 2009.

DRAINAGE PATH EVALUATION

Francis Street Assessment / Seven Out Tank Site Waycross, Ware County, Georgia

EPA's recommendation for additional work in the September 19, 2013 Special POLREP³¹ included the completion of a detailed and up-to-date drainage path evaluation to determine whether previous statements of runoff behavior from the Seven Out Tank Site (the "Site") were either inaccurate or have changed. Detailed site drainage descriptions can also be found in Georgia Environmental Protection Division's (GA EPD) 2005 Preliminary Assessment³² and 2006 Site Investigation³³.

Descriptions of drainage features are described here and are considered applicable as-of April 2014. The evaluation concludes that observed drainage patterns at the Seven Out Tank Site and surrounding area (within the boundaries described herein) have not changed since EPA first visited the Site during a 2004 Removal Site Evaluation³⁴. A visualization of the size and location of each feature can be found in Figure 1.

• Seven Out Tank Site – Tank Farm

Tank Farm – Size

Approximately 18,000 square feet

Tank Farm – Route of Discharge

None; the area is sloped to the east where it is retained by the unbroken concrete curb surrounding the entirety of the tank farm. Excessive rainwater could overflow to the east following intense successive rain events

Tank Farm – Observations December, 2013

No discernible odor or visible contamination on the pooled water surface

³¹ U.S. Environmental Protection Agency. Special POLREP for Seven Out Tank Site. September 19, 2013.

³² Georgia EPA. Preliminary Assessment. Seven Out LLC Tank. EPA ID # GAN000407811. Waycross, Ware County, Georgia. August 8, 2005.

³³ Georgia EPD. Site Inspection Report, Seven Out LLC Tank. CERCLIS ID. No. GAN000407811. October, 2006.

³⁴ U.S. Environmental Protection Agency. *Removal Assessment Report, Seven Out, LLC Site, Waycross, Ware County, Georgia.* December 9, 2004.

• Seven Out Tank Site - East Loading/Unloading Area

East Loading/Unloading Area – Size

Approximately 3,400 square feet

East Loading/Unloading Area – Route of Discharge

Sloped to the west where it is designed to drain northward via a grated trench (location of sample FSA-SF-CT) to a sump and drain pipe (approximately 6-8" diameter) that discharges to the drainage ditch at the southern border of the facility

East Loading/Unloading Area – Observations December, 2013

The drainage trench and pipe were generally overgrown and clogged, resulting in standing water at the eastern loading unloading area. As with the standing water in the tank farm, no discernible odor or visible contamination in the pooled water was observed

• Seven Out Tank Site – Shallow Trench Outside North Edge of Tank Farm

Trench Outside North Edge of Tank Farm – Size

Approximately 300 feet long

Trench Outside North Edge of Tank Farm – Route of Discharge

Sloped to the east and flows into the drain pipe that discharges to the ditch at the southern border of the facility. This shallow trench receives rainwater from the western paved area of the facility and from the southern sloped roof of the Omni Sports Awards building located north of the tank farm.

Trench Outside North Edge of Tank Farm – Observations December, 2013

The trench was observed to be dry and contained no discernible visual impacts

• Seven Out Tank Site – West Loading/Unloading Area

West Loading/Unloading Area – Size

Approximately 5,000 square feet

West Loading/Unloading Area – Route of Discharge

Sloped to the east and drains both to the shallow drainage trench outside the north end of the tank farm and to the south where rainwater flows around the south end of the tank farm

West Loading/Unloading Area – Observations December, 2013

The paved surface of the west side was observed to be dry and contained no discernible visual impacts

• Seven Out Tank Site – Soil Outside South Border of Tank Farm

Soil on South Side – Size

• Size of area that flows to South into drainage ditch

Approximately 24,000 square feet

Size of area that flows to East Loading/Unloading Area

Approximately 2,000 square feet

Soil on South Side – Route of Discharge

A majority of the area (24,000 square feet) sheet flows on a gradient to the south where it enters the drainage ditch at the southern border of the facility. A small area (2,000 square feet) flow to the east and then enters the paved loading unloading area at the east side of the tank farm where it eventually is transported to the same drainage ditch (samples SO-SW and FSA-SF-SCW were collected from within this smaller section)

Soil on South Side – Observations December, 2013

Vegetation in this area has grown significantly since the removal action was completed in 2009, but there were no discernible visual impacts to the soil or the vegetation

• Off-Site Drainage Path – Drainage Ditch at South Border of Site

Drainage Ditch – Size

Approximately 1,600 feet long. Includes decision units DU-01, DU-02, and DU-03

Drainage Ditch – Route of Discharge

The ditch receives stormwater from some sections of Francis Street and overland flow from the immediate area within a range of approximately 200-500 feet.

■ Drainage Ditch Route of Discharge – Upstream of Site (decision unit DU01)

A small drainage line discharges to an open vegetated ditch, approximately 15 feet wide and 8 feet deep, approximately 250 feet south of Francis Street and 210 feet east of Folks Street. The ditch flows west for 270 feet where it reaches the south border of the Seven Out Tank Site and intersects with DU-02 and continues to DU-03. The net elevation drop along this section was zero, where elevation measurements were taken at water surfaces of the left descending bank (LDB) and remained within a range of 3 inches.

■ Drainage Ditch Route of Discharge – Site Drainage (decision unit DU02)

The drain pipe from the east side of the Site discharges to a short vegetated ditch where it travels for only 35 feet before intersecting with the drainage ditch at the south border.

Drainage Ditch Route of Discharge – Downstream of Site (decision unit DU03)

The ditch continues west behind the Site for 550 feet and then another 280 feet where it enters a culvert under S Nichols Street. Prior to entering the culvert it is joined by a similarly-sized stormwater drainage ditch from the CSX Rice Yard property. It emerges from the culvert after 290 feet and then proceeds 210 feet northwest on the south border of the Waycross Coca-Cola Bottling Company property along a rip-rapped ditch before intersecting the city drainage canal (between DU-04 and DU-05). The section sampled in DU-03 includes only the 830 foot portion beginning at the south border of the Seven Out Tank Site at DU-02 and ending prior to the intersection with the ditch from the CSX Rice Yard; the total elevation drop along this portion was measured at 3.3 feet (0.4% o grade).

Drainage Ditch – Observations December, 2013

Water depth in the ditch was observed at depths ranging from 1-6 inches with a noticeable flow downstream but at a minute rate that could not be estimated. Minute flows were also observed from the discharges at the beginning of the ditch and the drain line from the east side of the Site (both flow rates approximately less than 0.5 liters per minute). Vegetation and brush along the ditch was heavy with no distinguishable points where regular pedestrian or vehicle access appeared to occur. No visible impacts to the ditch were observed.

• Off-Site Drainage Path – Branch of City Drainage Canal

Canal – Size

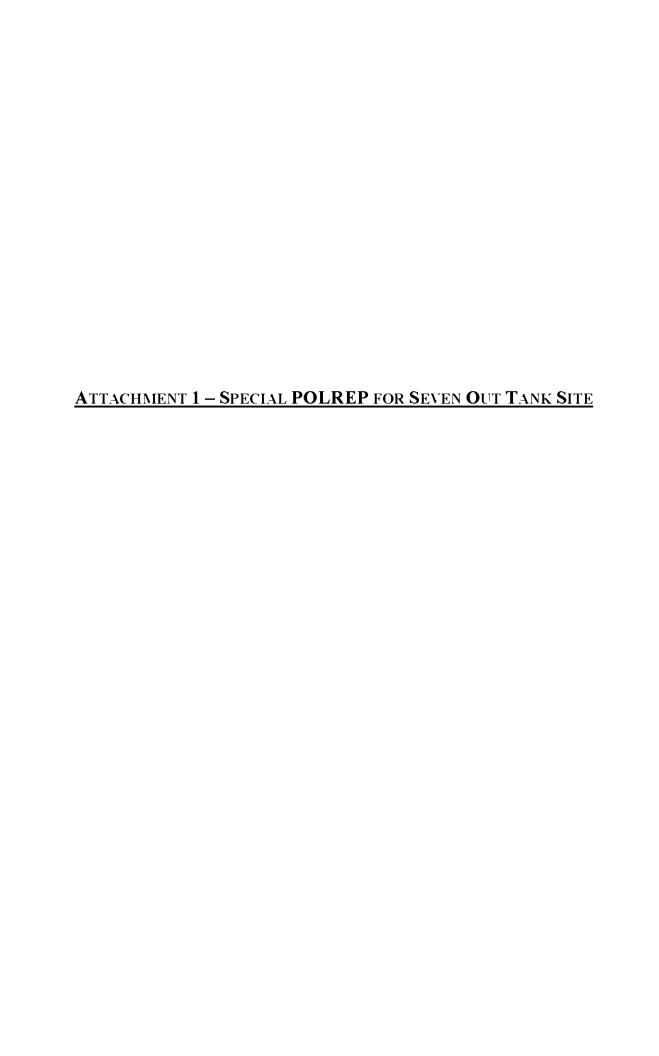
The branch of the City Drainage Canal that includes decision units DU-04 and DU-05 is approximately 3,800 feet long.

Canal – Route of Discharge

■ Canal Route of Discharge – Upstream of Intersection with Ditch (decision unit DU04)

DU-04 is approximately 1,900 feet long beginning at Alpha Street and ending at the intersection with the drainage ditch; this is approximately 3,400 feet downstream of the former MGP Site on Glenmore Avenue which was addressed by Atlanta Gas Light between 1997 and 2002 and included remediation of canal areas traversing through both DU-04 and DU-05. The canal itself is approximately 25 feet wide and 8 feet deep with vegetated banks that are regularly mowed. Within DU-04, it flows through culverts under Ga Street, Ann Street, and Margaret Street.

Canal Route of Discharge – Intersection between ditch and canal (sample FSA-SD-CO)


The ditch at the south border of the Site ultimately discharges into this branch of the City Drainage Canal at a location 250 feet south of Corridor Z (also known as South Georgia Parkway and Highway 82) and 320 feet west of S Nichols Street, directly adjacent to a dual railroad bridge over the canal and at the west side of the Waycross Coca-Cola Bottling Company property. Sample FSA-SD-CO was collected at this intersection.

Canal Route of Discharge – Downstream of Intersection with Ditch (decision unit DU05)

DU-05 is approximately 1,900 feet long beginning at the intersection and ending at Folks Street and throughout this section it flows through culverts under Corridor Z. Elizabeth Street, N Nichols Street, Mary Street, and McDonald Street. The culverts under Corridor Z and Elizabeth Street & Mary Street are each 250 feet long; combined with the other culverts this means that only 1150 feet of the DU-05 section (60%) is accessible. The canal traverses through Mary Street Park for 310 feet of its length.

• Canal – Observations December, 2013

Water in the canal was observed at widths from 6-10 feet and depths of 6-24 inches. Surface water flow averaged approximately 0.5 feet per second. The canal was primarily vegetated at the banks and contained an estimated sediment mix of approximately 60-70% course to medium sand (0.5-.25mm) and 30-40% very fine sand to silt (3.9-125µm). The canal is easily accessible to pedestrians but no patterns of activity (such as paths or other worn areas) were observed and no impacts were discernible.

U.S. ENVIRONMENTAL PROTECTION AGENCY POLLUTION/SITUATION REPORT

Copiah County Manufacturing Site Removal Site Evaluation POLREP

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY Region IV

Subject: POLREP

Seven Out Tank Site

901 Francis Street, Waycross, Ware County, Georgia

Latitude: 31.207401° North **Longitude:** 082.363473° West

To: James Webster, USEPA R4 ERRB

Jeff Cown, GA EPD Land Protection Branch

From: Matthew J. Huyser, On-Scene Coordinator

Date: September 19, 2013

Reporting Period: September 5, 2013

1 Introduction

Site Number: A4FY
Response Authority: CERCLA
Response Type: Time-Critical

Response Lead: EPA

Incident Category: Removal Assessment

NPL Status: Non NPL

1.1 Site Description

The Seven Out facility (the "Site") is an industrial wastewater treatment plant in Waycross, Ware County, Georgia, that operated from 2002 to 2004. The Site consists of a tank farm, an abandoned office building, and a small warehouse. The tank farm has 37 tanks ranging in volume of 8,000 gallons to 44,000 gallons, and a combined capacity of approximately 400,000 gallons. It is approximately one-half acre and is made of a concrete floor with a short concrete containment berm. South of the containment area is an office building of about 3,000 square feet. Around the south and east sides of the office building is a fenced lot

that contains the warehouse of about 4,500 square feet. The warehouse contains several drums, totes, and dry bags of material.

When the facility operated, treated wastewater was discharged to the City of Waycross publicly owned treatment works (POTW) using the City's collection system. Precipitated solids were treated in a filter press, and then transported off-Site for disposal at a landfill. The treatment process was generally unsuccessful and effluents regularly exceeded requirements of the company's pre-treatment discharge permit. The Seven Out facility received several Notices of Violation and an Administrative Order from the City of Waycross. On March 1, 2004, the City of Waycross disconnected the facility's connection to the POTW. The facility discontinued processing wastewaters, although it still received shipments. Incoming wastewaters were stored in tanks on-Site as well as four rented portable tanks that were placed on an adjoining property. Shortly thereafter and since that time, the facility ceased all operations without discharging the remaining waste in storage. Georgia EPD determined the facility to be incorrectly storing hazardous wastes and out of compliance with State of Georgia regulations.

GAEPD referred the Site to EPA for a Removal Site Evaluation. From August 23-26, 2004, EPA collected samples from onsite storage and treatment tanks. Because discolored soil was observed in some areas, soil samples were collected from a drainage ditch near the containment area, an area adjacent to frac tanks that had been stored outside the containment area, and along the south wall of the containment area. An emergency action was initiated by EPA on January 27, 2005 following a request for assistance from GAEPD on January 21, 2005. Under the emergency response action, pumpable liquids in the tanks and standing water in the secondary containment area were removed to mitigate the threat of release.

From 8 28-9 1 2006, GAEPD collected samples from the Site and the surrounding area as part of a remedial Site Inspection (SI). Their findings were submitted to EPA's Superfund Site Assessment Section on 11 20 2006 where it was determined that the Site did not qualify for further remedial site assessment due to lack of releases and targets for groundwater, surface water, and soil pathways.

After the 2005 emergency response, significant quantities of liquid and solid waste remained at the Site. An administrative order was signed on July 30, 2008, between EPA and Respondents, consisting of several generators that sent waste to the facility, to conduct a time-critical removal action to remove all remaining waste materials from the Site. The work to be performed under the order included:

- Implementation of the OSC-approved removal action in accordance with the schedule and requirements of a Removal Action Work Plan;
- Removal of waste material from all tanks, drums, and other containers on the Site, as well as from the secondary containment area;
- Decontamination and or disposal of all tanks, drums, and other containers on the Site, as well as decontamination of the secondary containment area; and,

- Disposal of the waste material removed from the Site, including any sampling and analysis necessary to determine proper treatment and disposal methods.

EPA conducted oversight of all removal activities, including collection of split-samples from several tanks. Over the course of the removal action, a total of 300,000 gallons of rainwater was discharged to the Waycross POTW, 905 tons of nonhazardous solid wastes were sent to an off-site landfill for disposal, and 3,900 gallons plus 108 tons of hazardous wastes (HW codes D002, D006, D007, and D018) were sent off-site for treatment and disposal. When the work was concluded and a final report was received, EPA issued the notice of completion letter on 11/16/2009.

1.2 Preliminary Removal Assessment/Removal Site Inspection Results

In August of 2013, EPA was contacted by residents of Waycross, Georgia, regarding health problems experienced by occupants of homes surrounding Folks Park (also known as "Mary Street Park") and the potential relationship of these symptoms to contaminants originating from the Seven Out Tank Site. Information and concerns from the community are being posted and documented at a website (www.silentdisaster.org) as well as an accompanying facebook group page.

The community group has documented complaints from 13 individuals at residences surrounding Folks Park, as well as from members of a church at the perimeter of the park. The group has also documented complaints from employees of a bank and the Waycross City Hall which are located over or near the underground unnamed creek. Reported health problems include the following:

- Tumors or "masses" (both benign and malignant)
- Cancer
- Respiratory problems
- Neurological problems
- Headaches

- Shaking or tremors
- Fatigue
- Vision and hearing trouble
- Sores

The community group has also documented unidentifiable sheen(s) emanating from lawns around Folks Park and within the unnamed creek through Folks Park. The sheen is observed on pavement and surface water after rain events and a "dry white substance" is deposited when the sheen has dried. Additional concerns include the deterioration and death of trees in Folks Park and deformation of amphibians in the unnamed creek within Folks Park.

The community group collected a sediment sample from the unnamed creek in Folks Park on July 3, 2013, and sent the sample to an environmental analytical laboratory for analysis. The laboratory returned a report with detections of Polynuclear Aromatic Hydrocarbons (PAHs) including Benz[a]anthracene, Benzo[b]fluoranthene, Benzo[k]fluoranthene, Chrysene, Fluoranthrene, Phenanthrene, and Pyrene. These constituents correspond to a list of PAHs detected in a soil sample collected by EPA during a Removal Site Evaluation (RSE) on August 26, 2004 at the Seven Out Tank Site.

Due to the proximity of the Site to the Folks Park residences, the stormwater drainage flow from the Site to the unnamed creek, and the reported detections of PAHs in the unnamed creek sediments at Folks Park, the community group believes that contamination originating from the Seven Out Tank Site may be the cause of local health and environmental problems that they have observed.

1.3 Site Location

The Site includes an office building, storage building, tank farm, and paved parking areas. The tank farm is not fenced and is accessible to the public via Folks Street, Francis Street, or McDonald Street. The property is immediately surrounded by commercial buildings to the east, west, and north with a major CSX Railroad terminal to the south. A lot to the south was previously used for staging mobile tanks that the facility used to store untreated waste water. The nearest residential property is located at 103 Folks Street approximately 220 feet from the tank farm area; nearby residential to neighborhoods are located to the west and north.

The Site lies in an area of minimal flooding outside of both the 100-year and 500-year flood zones. Overland flow from the Site flows into a drainage ditch south of the tank farm and north of the railroad tracks on the Site drainage ditch continues west, roughly parallel to the railroad tracks, for approximately 1200 feet into an unnamed creek. Just south of the ditch is a petroleum facility, C & M Oil Company, which also discharges overland runoff to the drainage ditch. Immediately south of this intersection is a former BP fuel tank farm, which also discharges overland runoff to the unnamed creek. The creek flows northeast for approximately 5000 feet, flowing through Folks Park and underground through the city center after which it emerges at Lee Avenue and Memorial Drive (Hwy 23). Water then flows east for less than 1000 feet then joins the Waycross City Drainage Canal the PPE. The City Drainage Canal flows in a northeast direction for approximately 3 miles before joining the Satilla River.

2 Removal Site Evaluation

EPA OSC Huyser visited the Site on September 5, 2013 and observed that no significant changes had occurred at the facility. Thick vegetative growth has occurred outside the south border of the tank farm and has reached heights in excess of 10 feet. Standing water was observed on the east side of the property both inside and outside the containment area; the inability of the Site to fully shed rainwater is consistent with observations made during the 2008-2009 removal action. This behavior is likely due to an intentional design that would help keep liquids on-site in the event of a spill.

Also on September 5, OSC Huyser met with representatives of the community group and observed the areas in the unnamed creek and the residential yards where sheens had been observed and photographed. A light sheen of approximately 5 cubic centimeters was observed between vegetation within the creek flowing through Folks Park; this sheen presented characteristics consistent with a hydrocarbon source as opposed to a discharge from a bacterial or other local organic source. The sheen and or residue on paved surfaces that had been reported from residential yards after rain events were not visible on September 5. Another area observed was near a culvert where the drainage ditch at the southern border of the Site passed under S Nicholls Street; concerns of dying or absent vegetation were pointed out in an area at the northwest corner of a property owned by CSX Railroad. The final area observed was at the intersection of the unnamed creek and Margaret Street, approximately 2500 feet upstream from Folks Park and 1000 feet upstream from the confluence with

the drainage ditch that passes the southern border of the Site. Concerns of previously observed sheens and light tan foam were pointed out; no sheen was visible on September 5 but light foam was observed collecting around debris in the creek.

The analytical results from a sediment sample collected by the community group from the unnamed creek in Folks Park point to a presence of PAHs that correspond to a list of PAHs detected in a soil sample collected by EPA during a Removal Site Evaluation (RSE) on August 26, 2004 at the Seven Out Tank Site (See Table 1):

Table 1. Soil Samples Collected by EPA (2 of 4) and by Community Group (1 of 1)

Tuble 1. Son Sumples Confected by E1 A (2 b) 4) and by Community Group (1 b) 1)							
Sour			Soil Sample SO-SW	Soil Sample SO-DD	Sediment Sample		
		Source:	Taken by EPA Near	aken by EPA Near Taken by EPA Near			
			South Perimeter of	Drainage Area of	in Unnamed Creek at		
			Seven Out Site	Seven Out Site	Folks Park		
		Data	Collected	Collected	Collected 7/3/2013		
	Date:		8/26/2004	8/26/2004	Collected 7/5/2015		
		Units:	mg/kg	mg/kg	mg/kg		
SU	Benz[a]anthracer	ne	2.4	0.33 UJ	0.556		
.bol	Benzo[a]pyrene		2.8	0.33 U	ND		
Ocal	Benzo[b]fluorant	hene	1.8	0.33 U	0.827		
Hydrocarbons	Benzo[k]fluoranthene (*California-Modified)		3.2	0.33 U	0.398		
Polynuclear Aromatic (PAHs)	Chrysene (*California-Modified)		3.1	0.330UJ	0.067		
Arc)	Dibenz[a,h]anthracene		0.65	0.33 U	ND		
ear	Fluoranthrene		4.6	0.33 U	0.069		
nc	Indeno[1,2,3-cd]p	oyrene	3	0.33 U	ND		
lyn	Phenanthrene		1.8	0.4	0.378		
4	Pyrene		4	0.330UJ	1.52		

Sample SO-SW was collected from discolored surface soils outside the containment area of the tank farm, near the mechanical sludge press at the southeast corner. Of the four samples collected during EPA's assessment, this was the only sample which showed detectable levels of PAHs. One of the samples which did not show detectable of PAHs was sample SO-DD, which was collected within the drainage path (but no, in the drainage ditch) exiting the Site at the southeast corner. The two other soil samples were collected from discolored soils near the frac tanks at the south lot from the facility.

The community's primary concern regarding EPA's samples relates to a comparison that was made in EPA's December 9, 2004 Removal Assessment Report in which the soil sample results are evaluated against to the EPA Region 9 Preliminary Remediation Goal (PRG) Residential Screening Levels (RSLs) and Industrial Screening Levels (ISLs) (See Table 2):

Table 2. Screening Levels used for Comparison in Removal Assessment Report

Inou	Table 2. Screening Levels used for Comparison in Removal Assessment Report							
			R9 PRG RSLs for	R9 PRG ISLs for				
			Residential Soil	Industrial Soil	R9 PRGs for	R9 PRGs for		
		Source:	Use for	Used for	Residential	Industrial		
		1	Comparison in	Comparison in	Soils	Soils		
			RSE Report	RSE Report	30113	33113		
			Referenced on	Referenced on	Distributed Oct,	Distributed		
		Date:	12/9/2004	12/9/2004	2004	Oct, 2004		
		Units:	mg/kg	mg/kg	mg/kg	mg/kg		
S	Benz[a]anthra	acene	0.621	2.11	0.62	2.1		
ou	Benzo[a]pyrene		0.0621	0.211	0.062	0.21		
cart	Benzo[b]fluor	anthene	0.621	2.11	0.62	2.1		
<u>ē</u>	Benzo[k]fluoranthene		0.378	1.28	6.2	21		
ρ	(*California-N	1odified)			(*0.38)	(*1.3)		
ic l	Chrysene		3.78	12.8	62	210		
omatic (PAHs)	(*California-N	1odified)			(*3.8)	(*13)		
ror P	Dibenz[a,h]anthracene		0.0621	0.211	0.062	210		
ar A	Fluoranthrene	9	2290	22000	2300	22000		
Cle	Indeno[1,2,3-							
T .	cd]pyrene		0.621	2.11	0.62	21		
Polynuclear Aromatic Hydrocarbons (PAHs)	Phenanthrene		NSA	NSA	NSA	NSA		
2	Pyrene		2320	29100	2300	29000		

When compared to the Region 9 PRGs, sample SO-SW exceeds the industrial soil screening level for Benz[a]anthracene, Benzo[a]pyrene, Benzo[k]flouranthene, Dibenz[a,h]anthracene, and Indeno[1,2,3-cd]pyrene; and also exceeds the residential soil screening level for Benzo[b]fluoranthene. Only Benzo[a]pyrene is exceeded by an order of magnitude (2.8 mg/kg in the sample against an industrial PRG of 0.211 mg/kg) while the remaining exceedences are within a range of 150% to 300% of the PRG value.

Section 3.2 of the 2004 Removal Assessment Report for the Seven Out Tank Site quotes the EPA Region 9 PRG website (http://www.epa.gov/region09Avaste/srund/prg/rndex.htm.) to provide the following explanation of why this comparison was made:

PRGs "are risk-based concentrations that are intended to assist risk assessors and others in initial screening-level evaluations of environmental measurements. The PRGs contained in the Region 9 PRG Table are generic; they are calculated without site specific information". The website also states that "PRGs should be viewed as Agency guidelines, not legally enforceable standards. They are used for site 'screening' and as initial cleanup goals, if applicable. PRGs are not de facto cleanup standards and should not be applied as such. However, they are helpful in providing long-term targets to use during the analysis of different remedial alternatives."

Screening levels that are used to evaluate sites for an emergency or a time critical removal action are typically higher than the PRG value and have been referred to as "Removal Action Levels" (RALs) or "Removal Management Levels" (RMLs). These values are similar to PRGs in that they are not site-specific and not enforceable, but are different in that they are used to provide guidance for initiating an action. Table 3 compares the most recent version of RMLs to the most recent version of RSLs:

Table 3. Latest versions of Regional Screening Levels and Removal Management Levels

Source		Source:	RSL for Residential Soils	RSL for Industrial Soils	RML for Residential Soils	RML for Industrial Soils
		Date:	Distributed May, 2013	Distributed May, 2013	Distributed Dec, 2012	Distributed Dec, 2012
		Units:	mg/kg	mg/kg	mg/kg	mg/kg
	Benz[a]anthracene		0.15	2.1	15	210
	Benzo[a]pyrene		0.015	0.21	1.5	21
Benzo[b]fluoranth Chrysene Chrysene		anthene	0.15	2.1	15	210
		anthene	1.5	21	150	2100
			150	210	1500	21000
clea	Chrysene Dibenz[a,h]anthracen Fluoranthrene		0.015	0.021	1.5	210
roc Ju	Dibenz[a,h]anthracene Fluoranthrene Indeno[1,2,3-cd]pyrene		230	2100	6900	66000
Poly Hyd	Indeno[1,2,3-	cd]pyrene	0.15	2.1	15	210
	Phenanthrene		NSA	NSA	NSA	NSA
	Pyrene		170	1700	5200	50000

When compared to the RMLs for residential and industrial soils, a single RML for residential soil (1.5 mg/kg) is exceeded by Benzo[a]pyrene in sample SO-SW (2.8 mg/kg). Despite exceeding the residential RML by 180%, the concentration is still only 13% of the industrial RML and is merely a single location within an industrial property (it is not representative of the property as a whole). Moreover, PAHs were not detected within the contents of the tanks on-site when samples were collected during EPA's removal assessment in 2004. PAHs were reported in samples that were taken from the tanks as part of the 2008 removal action, and several of these samples were split for independent analysis by EPA's START contractor, but all results were flagged as unreliable estimates of an actual concentration. Tables 4 and 5 present the data from samples that were collected from the tanks during November 2008; the acronym "ND" means that the analyte was "not detected" while the letter "J" means that the value is merely an approximated concentration:

Table 4. Concentrations of PAHs from Tanks CT-1 and CT-4

		0 0					9
	Source:	Tank	CT-1 (Liquid)	Tank CT-1 (Solid)		CT-4 (Solid)	id)
		EPA START	RP Group	EPA START	RP Group	RP Group	
	Sampler:	Contractor	Contractor	Contractor	Contractor	Contractor	
	Sampler.	Tetra Tech	Winter	Tetra Tech	Winter	Winter	
		(split)	Environmental	(split)	Environmental	Environmental	
	Date:	11/11/2008	11/11/2008	11/11/2008	11/11/2008	11/11/2008	
	Units:	mg/L	mg/L	mg/kg	mg/kg	mg/kg	
	Benz[a]anthracene	ND	0.0346 J	ND	ND	0.66 J	
υ _	Benzo[a]pyrene	ND	0.0262 J	ND	ND	0.54 J	
omatic (PAHs)	Benzo[b]fluoranthene	ND	0.0341 J	ND	ND	0.69 J	
Polynuclear Aromatic Hydrocarbons (PAHs)	Benzo[k]fluoranthene	0.0045 J	0.0287 J	ND	0.67 J	1.1 J	
Polynuclear Ar Hydrocarbons	Chrysene	0.0089 J	0.0463 J	ND	0.57 J	1.2 J	
clea	Dibenz[a,h]anthracene	ND	ND	ND	ND	ND	
loc Jun	Fluoranthrene	0.027 J	153	28 J	1.3 J	2.7 J	
o P F	Indeno[1,2,3-cd]pyrene	ND	0.0147 J	ND	ND	ND	
	Phenanthrene	0.011 J	221	54 J	1.8 J	1.6 J	
	Pyrene	0.0071 J	88.8	ND	ND	1.4 J	

Table 5. Concentrations of PAHs from Tank CT-5

		Source:	: Tank CT-5 (Liquid) Tank CT-5 (Solid)	id)	
		Sampler:	EPA START Contractor Tetra Tech (split)	RP Group Contractor Winter Environmental	EPA START Contractor Tetra Tech (split)	EPA START Contractor Tetra Tech (split duplicate)	RP Group Contractor Winter Environmental	
		Date:	11/11/2008	11/11/2008	11/11/2008	11/11/2008	11/11/2008	
		Units:	mg/L	mg/L	mg/kg	mg/kg	mg/kg	
Polynuclear Aromatic Hydrocarbons (PAHs)	Benz[a]anthracene		ND	ND	10 J	17 J	ND	
	Benzo[a]pyrene		0.0060 J	ND	ND	ND	ND	
	Benzo[b]fluoranthene		0.01 J	ND	ND	24 J	ND	
	Benzo[k]fluoranthene		0.0084 J	ND	ND	19 J	0.59 J	
r Al	Chrysene		0.017 J	ND	25 J	ND	0.63 J	
Polynuclear Ar Hydrocarbons	Dibenz[a,h]ar	nthracene	ND	ND	ND	ND	ND	
roc roc	Fluoranthren	e	0.037 J	0.0032 J	95 J	130 J	2.8 J	
o P	Indeno[1,2,3-	cd]pyrene	ND	ND	ND	ND	ND	
	Phenanthren	e	0.0099 J	ND	55 J	78 J	2.3 J	
	Pyrene		ND	0.00305 J	14 J	24 J	0.8 J	

Upon initial inspection, it appears that the sludge in Tank CT-5 was the only potential source of PAHs (the 250 gallons of sludge in tank CT-5 represented less than 1/25 of the tank's total contents and less than 1/2,000 of all waste at the Site) but the values were difficult to discern and could only estimated. Split samples were analyzed by two separate laboratories using the same EPA extraction methods (SW-846 3510C) and analysis methods (SW-846 8270C). Discrepancies between split samples were not consistent and values within the same sample could not be repeated (as evidenced

by the duplicate sample for CT-5-Solid) which indicates a high level of interference within the sample itself.

Not represented in Tables 4 and 5 are samples that EPA collected from the tanks as of the 2004 RSE. No PAHs were detected in these 2004 tank samples and thus PAHs were not identified as a contaminant of concern at the Site. The contaminants of concern that were cited in EPA's 2007 Enforcement Action Memorandum included: acetone, benzene, sulfuric acid, sodium hydroxide, D002 hazardous wastes (corrosives), and used oil.

3 Recommendation

Additional sampling is recommended to delineate the potential contaminants in the drainage pathway that may have been released from the Site. Furthermore, a detailed and up-to-date drainage path evaluation should be conducted to determine whether previous determinations of runoff behavior from the Site were either inaccurate or have changed.

Concerns identified by the community representatives had included illnesses and surface waters at the Ruskin Elementary School in Ware County. OSC Huyser visited the Ruskin Elementary School on September 5th and observed that the school is in a remote location, it is relatively distant from the Site (more than 5.5 miles), and there were no visible surface water contaminants or potential sources of contamination (additionally, no groundwater contamination has been suspected or attributed to the Site and no groundwater wells exist at-, or are used by-, the school). OSC Huyser informed representatives from Ware County Schools that there is no available information to suggest that the Ruskin Elementary School has been impacted by the Seven Out Tank Site. Assistance regarding any other health or environmental concerns at the school can be elevated through agencies of Ware County and the State of Georgia.

ATTACHMENT 2 – FINAL ASSESSMENT LETTER REPORT FOR FRANCIS STREET SITE

May 19, 2014

Mr. Matthew Huyser, PE On-Scene Coordinator U.S. Environmental Protection Agency 61 Forsyth Street, SW, 11th Floor Atlanta, Georgia 30303

Subject: Assessment Letter Report, Revision 1

Francis Street Site

Waycross, Ware County, Georgia EPA Contract No. EP-W-05-054 TDD No. TTEMI-05-003-0168

Dear Mr. Huyser,

The Tetra Tech Superfund Technical Assessment and Response Team (START) is submitting this letter report summarizing assessment activities conducted on December 19, 2013 at the Francis Street Site in Waycross, Ware County, Georgia. This report incorporates revisions based on comments made on the letter report submitted April 3, 2014. This report contains six enclosures. Enclosure 1 contains figures depicting the Site and sampling locations. Enclosure 2 contains tables presenting the analytical results for soil and sediment samples collected during field activities. Enclosure 3 contains the photographic log. Enclosure 4 provides the Tetra Tech START field logbook notes. Enclosure 5 provides the analytical data package. Enclosure 6 provides the Tetra Tech data validation report.

1.0 BACKGROUND

The former Seven Out facility was a wastewater treatment facility located on about 2.36 acres at 901 Francis Street, Waycross, Ware County, Georgia (see Figure 1 in Enclosure 1). The Site consists of a small service building and a tank farm containing dozens of vertical and horizontal tanks, with associated piping and valve works, although most structures were removed in November 2013. The Site is bounded by Francis Street to the north, Folks Street to the east, and property owned by CSX railroad to the south and west. Site stormwater discharges into a small drainage trench at the southeast corner of the Site and flows into a drainage ditch along the southern boundary. The drainage ditch flows west for about 1,100 feet before it discharges into a drainage canal (see Figure 2 in Enclosure 1).

The Seven Out site previously received industrial wastewater for on-site treatment, but failed to meet effluent discharge requirements and subsequently lost its discharge permit in March 2004. However, the facility continued to accept waste until full storage capacity was reached. At some time later in 2004, the owners abandoned the facility, leaving approximately 350,000 gallons of liquid waste and 150,000 gallons of sludge or solids stored at the Site.

In August 2004, Tetra Tech, at the direction of the U.S. Environmental Protection Agency (EPA), performed a removal assessment at the Site to characterize waste liquid, sludges, and solids present at the Site. Detectable concentrations of organic and inorganic chemicals were found in the tank samples, but not at levels that would qualify any of the materials as hazardous. Three soil samples were collected from the Site during the removal assessment. One soil sample, SO-SW, collected directly outside of the

Mr. M. Huyser, PE May 19, 2014

southern containment wall, contained benzo(b)fluoranthene at a level exceeding the Region 9 Preliminary Remediation Goal (PRG) for residential soil. Benzo(a)anthracene, benzo(a)pyrene, dibenz(a,h)anthracene, and indeno(1,2,3-cd)pyrene were detected at levels that exceeded the Region 9 PRGs for residential and industrial soil. All of the chemicals with detections above PRGs are part of a group of organics known as polycyclic aromatic hydrocarbons (PAH). Sample SO-SW was the only sample that exceeded the PRG, suggesting that contamination was not a widespread concern. Furthermore, a soil sample collected the same day from a location downgradient of sample SO-SW did not contain contaminants at levels exceeding PRGs. Contamination levels detected in SO-SW also did not exceed EPA Regional Screening Levels (RSLs) or Removal Action Levels (RALs), which are used to provide guidance during an emergency response or time-critical removal action. For these reasons, the contaminated soil was not remediated.

In January 2005, EPA mobilized to the Site to conduct an emergency removal action to address wastewater that was observed overtopping the on-site secondary containment walls and flowing into a nearby drainage ditch. EPA removed approximately 350,000 gallons of wastewater and other liquid wastes. The solids and sludge located within the treatment area were not addressed at that time.

EPA cost-recovery activities identified several entities as potentially responsible parties (PRP) for the Site. In 2008, the PRPs entered into an Agreement and Order on Consent (AOC) with EPA to conduct removal activities in accordance with the National Oil and Hazardous Substances Pollution Contingency Plan (NCP). These removal activities included removing all process solids and sludges from the Site and decommissioning the tanks. The removal concluded in late 2009 and EPA issued a Notice of Completion letter on November 16, 2009. The property is currently vacant.

In 2013, local residents expressed concerns regarding possible contamination coming from the Site. A sediment sample collected on behalf of a resident from the drainage canal at Folks Park contained PAHs above EPA RSLs for residential soil. In response to these concerns, EPA conducted a soil and sediment assessment to evaluate whether residual contamination from the Site is contributing to contamination within the drainage ditch and drainage canal. The letter report details the assessment process and summarizes the results.

2.0 SITE RECONNAISSANCE ACTIVITIES

On November 14, 2013, the EPA On-scene Coordinator (OSC) and the Tetra Tech site manager met at the Site to visually assess suitable sampling locations. A total of two soil sampling locations and six sediment sampling locations were identified.

3.0 SAMPLING DESIGN

The goal of the assessment was to generate data that could be used to evaluate the possibility that the Site has contributed, or is currently contributing, to contamination in the drainage ditch and drainage canal. Generating these data involved collecting soil and sediment samples to be used to determine the presence or absence of contamination at locations upgradient and downgradient of the Site.

Incremental sampling methodology (ISM) was applied to the extent possible during assessment activities. ISM consists of dividing the sampled area into discrete areas, or "decision units" (DUs), and collecting 30 or more aliquots (or "increments") of media from each DU. All increments are homogenized together in the field and the entire sample is submitted to the laboratory. The laboratory then performs another homogenization and analyzes the sample. The ISM method was selected to obtain a representative value

Mr. M. Huyser, PE May 19, 2014

for each area as a whole. For an in-depth discussion of the field and laboratory protocols used during this assessment, see Section 1.4 of Final Quality Assurance Project Plan: Francis Street Assessment, December 10, 2013. Five-point composite samples were collected at locations where area size or topography made ISM sampling impractical (see Figure 2 in Enclosure 1).

On December 19, 2013, the EPA OSC and Tetra Tech arrived at the Site to conduct assessment activities. The Tetra Tech site manager, one Tetra Tech field team member, the EPA Task Monitor, and personnel from the Ware County Health Department and the Georgia Department of Public Health completed the field work in 1 day.

A total of 10 sediment samples were collected. Eight of the 10 samples were 30-increment samples that underwent the ISM protocol in the field and at the laboratory. Because of its size, one sediment sample (FSA-SD-DU02) was a 15-increment sample that underwent the ISM protocol in the field and at the laboratory. Because of its size and terrain, one sediment sample (FSA-SD-CO) was a five-point composite that underwent the ISM protocol in the laboratory only. The two soil samples and one duplicate soil sample collected at the Site were all five-point composites and did not receive any ISM processing.

Composite soil sample FSA-SF-CT was collected from a small concrete trench along the eastern side of the former Seven Out property. The sample was collected with a hand auger from 0 to 6 inches below ground surface (bgs). Although the trench does not appear to be the main drainage pathway for the majority of the Site, it does appear to capture some runoff from the northeastern portion of the Site.

Composite soil sample FSA-SF-SCW was collected outside the southern containment wall in the same location as soil sample SO-SW, collected during the 2004 removal assessment¹. The sample was collected with a hand auger from 0 to 6 inches bgs. This sample was collected to compare PAH concentrations detected in 2004 with current concentrations. The soil duplicate sample, FSA-SF-SCW-DUP, was also collected at this location.

Sediment sample FSA-SD-DU01 was collected from DU 01, the drainage ditch upgradient of the former Seven Out Site. The sample was a 30-increment ISM sample, with increments collected from 0 to 3 inches below sediment grade (bsg). The sediment sample was collected as a drainage ditch background sample to assess contamination levels upgradient of the former Seven Out facility.

Sediment sample FSA-SD-DU02 was collected from DU 02, the small drainage trench running between the former Seven Out facility and the drainage ditch that served as the main drainage pathway for Seven Out runoff. The quality assurance project plan (QAPP) specified that a 30-increment ISM sediment sample was to be collected from this DU; however, based on the short length of the DU, a 15-increment ISM sediment sample was collected instead. This sample represents the only deviation from the QAPP during field work. The sample collected from DU 02 was from 0 to 3 inches bsg to assess water entering the drainage ditch from the former Seven Out Site.

Three sediment samples (FSA-SD-DU03-A, FSA-SD-DU03-B, and FSA-SD-DU03-C) were collected from DU 03, the section of the drainage ditch running from downgradient of the drainage trench to the railroad tracks west of the Site. Three sediment samples ("triplicate sampling") were collected to allow calculation of a total relative standard deviation (RSD) value to assess contaminant homogeneity within the DU. Additionally, one sample (FSA-SD-DU03-A) was selected for laboratory triplicate analysis to

¹ Tetra Tech. "Seven Out, LLC Site: Removal Assessment Report." Prepared for USEPA Region 4. December 9, 2004.

1

Mr. M. Huyser, PE May 19, 2014

allow calculation of an analytical RSD value. The samples collected from DU 03 were 30-increment ISM composite samples collected from 0 to 3 inches bsg to assess contamination levels downgradient of the former Seven Out facility, but immediately upgradient of the drainage canal.

Three sediment samples (FSA-SD-DU04-A, FSA-SD-DU04-B, and FSA-SD-DU04-C) were collected from DU 04, the drainage canal upgradient of the confluence with the drainage ditch, between Alpha Street and the railroad overpass. Similar to DU 03, triplicate sampling was conducted to allow calculation of a total RSD. Additionally, one sample (FSA-SD-DU04-A) was selected for laboratory triplicate analysis to allow calculation of an analytical RSD value. The samples collected from DU 04 were 30-increment ISM composite samples collected from 0 to 3 inches bsg and were intended to assess contamination levels in the drainage canal upgradient of the confluence with the drainage ditch.

Sediment sample FSA-SD-CO was a five-point composite sediment sample collected from 0 to 3 inches bsg at the confluence of the drainage canal and the drainage ditch, between the railroad overpass and the Highway 82 overpass. The short length and terrain of this stretch of canal did not permit collection of a full 30-increment composite sediment sample. However, this sample received the same ISM laboratory protocol as all other sediment samples. This sediment sample was collected to assess contamination at the confluence of the drainage canal and the drainage ditch.

Sediment sample FSA-SD-DU05 was a 30-increment composite sediment sample collected from the drainage canal, between the Highway 82 overpass and Folks Street. The sample was a 30-increment ISM sediment sample collected from 0 to 3 inches bsg. This sample was intended to assess possible contamination in the drainage canal downgradient of the confluence with the drainage ditch.

4.0 ANALYTICAL RESULTS

This section discusses the results of laboratory analysis of the soil and sediment samples collected during the December field event. Analytical results are compared to Georgia Environmental Protection Division (GaEPD) standards and EPA RSLs and Removal Management Levels (RMLs). The GaEPD standards chosen for comparison are Type 1 (standardized, residential properties) Risk Reduction Standards (RRS) for soil. Results are presented in the tables in Enclosure 2.

Tetra Tech conducted a Stage 4 data validation (see Enclosure 6), which includes a quality assurance and quality control (QA/QC) comparison between the data listed in the electronic data deliverable and the electronic portable document format copy of the analytical data package. Analytical results were validated in accordance with the associated EPA SW-846 methods and the EPA National Functional Guidelines for Superfund Organic Methods Data Review, EPA-540-R-08-01, June 2008. Analytical results flagged with a "J" indicate that the analyte was positively identified and that the associated value is approximate. Analytical results flagged with a "J+" indicate that the analyte was positively identified and that the associated value is approximate and may be biased high. Analytical results flagged with a "U" indicate that the analyte was analyzed for, but not detected; the number reported is the laboratory-derived reporting limit (RL) for the constituent in that sample. For the complete analytical results, see Table 1 and 2 in Enclosure 2.

4.1 RESULTS COMPARED TO GAEPD TYPE 1 RRS

For all chemicals of concern in this investigation, the Type 1 RRSs were equivalent to the notification concentrations found in Appendix I of 391-3-19-.07 of The Rules and Regulations of the State of Georgia. These are the same values used as a cleanup standard for a previous removal action along the drainage canal².

4.1.1 On-site Soil Samples (GaEPD RRS)

The soil samples collected outside of the southern containment wall contained benzo(a)pyrene at concentrations exceeding the GaEPD Type 1 soil RRS. Benzo(a)pyrene was detected at 1,800 μ g/kg in soil sample FSA-SF-SCW and 2,100 μ g/kg in soil sample FSA-SF-SCW-DUP; these concentrations exceed the GaEPD Type 1 soil RRS of 1,640 μ g/kg. No other analytes were detected at concentrations exceeding GaEPD Type 1 soil RRS at the southern containment wall location.

No analytes were detected above GaEPD Type 1 soil RRS in the soil sample collected from the concrete trench at the northeast corner of the Site.

4.1.2 Background Sediment Sample (GaEPD RRS)

Sediment sample FSA-SD-DU01, collected from DU01, contained no analytes at concentrations exceeding GaEPD Type 1 soil RRS.

4.1.3 On-site Sediment Sample (GaEPD RRS)

Sediment sample FSA-SD-DU02, collected from DU02, contained no analytes at concentrations exceeding GaEPD Type 1 soil RRS.

4.1.4 Downgradient Drainage Ditch Sediment Sample (GaEPD RRS)

Sediment samples FSA-SD-DU03-A, FSA-SD-DU03-B, and FSA-SD-DU03-C, collected from DU03, contained no analytes at concentrations exceeding GaEPD Type 1 soil RRS.

4.1.5 Upgradient Drainage Canal Sediment Sample (GaEPD RRS)

Sediment samples FSA-SD-DU04-A, FSA-SD-DU04-B, and FSA-SD-DU04-C, collected from DU04, contained no analytes at concentrations exceeding GaEPD Type 1 soil RRS.

4.1.6 Drainage Ditch/Drainage Canal Confluence Sediment Sample (GaEPD RRS)

Sediment sample FSA-SD-CO, collected at the confluence of the drainage canal and drainage ditch, contained no analytes at concentrations exceeding GaEPD Type 1 soil RRS.

4.1.7 Downgradient Drainage Canal Sediment Sample (GaEPD RRS)

Sediment sample FSA-SD-DU05, collected from the drainage canal, downgradient of the confluence with the drainage ditch, contained no analytes at concentrations exceeding GaEPD Type 1 soil RRS.

² Williams Environmental Services, Inc. "Compliance Status Report, Volume 1: Waycross MGP Drainage Canal Project." Prepared for Atlanta Gas Light Company. May 24, 2000.

4.2 RESULTS COMPARED TO EPA RSLs and RMLs

The EPA RSL for residential soil for all contaminants discussed is lower than the RSL for industrial soil, which is lower than the EPA RML for residential soil. (In other words, if a contaminant is said to exceed the EPA RML for residential soil, it can be assumed that it also exceeded the EPA RSL for residential and industrial soil.) No analytical results exceeded the EPA RML for industrial soil.

4.2.1 On-site Soil Samples (EPA RSL/RML)

Soil samples collected from the former Seven Out site contained PAHs at levels exceeding comparison levels. Soil sample FSA-SF-CT, collected from the concrete trench at the northeast corner of the site, contained benzo(a)pyrene at 77 J+ micrograms per kilogram (µg/kg) and dibenz(a,h)anthracene at 16 µg/kg, which exceeds the EPA RSL of 15 µg/kg for residential soil.

Soil samples FSA-SF-SCW and FSA-SF-SCW-DUP, collected from outside the southern containment wall at the location of 2004 soil sample SO-SW, contained five PAHs at levels that exceeded comparison levels. Benzo(a)anthracene (up to 2,100 μ g/kg), benzo(b)fluoranthene (up to 3,100 μ g/kg) and indeno(1,2,3-cd)pyrene (up to 1,700 μ g/kg) were detected at levels exceeding their respective EPA RSLs for residential soil. Dibenz(a,h)anthracene was detected at 440 μ g/kg, which exceeds the EPA RSL of 210 μ g/kg for industrial soil. Benzo(a)pyrene was detected at 1,800 μ g/kg, which exceeds the EPA RML of 1,500 μ g/kg for residential soil.

4.2.2 Background Sediment Sample (EPA RSL/RML)

Sediment sample FSA-SD-DU01, collected from DU01, contained the same five PAHs exceeding comparison levels as the on-site soil samples. Benzo(a)anthracene (370 μ g/kg), benzo(b)fluoranthene (1,500 μ g/kg), dibenz(a,h)anthracene (150 μ g/kg), and indeno(1,2,3-cd)pyrene (600 μ g/kg) were detected above the EPA RSLs for residential soil. Benzo(a)pyrene was detected at 580 μ g/kg, which exceeds the EPA RSL of 210 μ g/kg for industrial soil.

4.2.3 On-site Sediment Sample (EPA RSL/RML)

Sediment sample FSA-SD-DU02, collected from DU02, contained the same five PAHs exceeding comparison levels as the on-site soil and background sediment samples. Benzo(a)anthracene (320 μ g/kg), benzo(b)fluoranthene (760 μ g/kg), dibenz(a,h)anthracene (87 μ g/kg), and indeno(1,2,3-cd)pyrene (340 μ g/kg) were detected above the EPA RSLs for residential soil. Benzo(a)pyrene was detected at 390 μ g/kg, which exceeds the EPA RSL of 210 μ g/kg for industrial soil.

4.2.4 Downgradient Drainage Ditch Sediment Sample (EPA RSL/RML)

Sediment samples FSA-SD-DU03-A, FSA-SD-DU03-B, and FSA-SD-DU03-C, collected from DU03, contained the same five PAHs exceeding comparison levels as the on-site soil and sediment samples and the background sediment sample. Benzo(a)anthracene (up to 190 μ g/kg), benzo(b)fluoranthene (up to 690 μ g/kg), dibenz(a,h)anthracene (up to 78 μ g/kg) and indeno(1,2,3-cd)pyrene (up to 290 μ g/kg) were detected above the EPA RSLs for residential soil. Benzo(a)pyrene was detected as high as 290 μ g/kg, which exceeds the EPA RSL of 210 μ g/kg for industrial soil.

4.2.5 Upgradient Drainage Canal Sediment Sample (EPA RSL/RML)

Sediment samples FSA-SD-DU04-A, FSA-SD-DU04-B, and FSA-SD-DU04-C, collected from DU04, contained only benzo(a)pyrene at a concentration exceeding EPA comparison levels. Benzo(a)pyrene was detected as high as 35 µg/kg, which exceeds the EPA RSL of 15 µg/kg for residential soil.

4.2.6 Drainage Ditch/Drainage Canal Confluence Sediment Sample (EPA RSL/RML)

No PAHs were detected above comparison levels in sediment sample FSA-SD-CO, collected at the confluence of the drainage canal and drainage ditch. Benzo(a)pyrene was detected at a concentration equal to a EPA comparison level. Benzo(a)pyrene was detected at 15 J+ μ g/kg, equal to the EPA RSL of 15 μ g/kg for residential soil.

4.2.7 Downgradient Drainage Canal Sediment Sample (EPA RSL/RML)

Sediment sample FSA-SD-DU05, was collected from the drainage canal, downgradient of the confluence with the drainage ditch. No contaminants were detected at levels exceeding EPA RSLs.

4.3 SAMPLE REPRESENTATIVENESS

Triplicate sampling was implemented in DU03 and DU04 to assess contaminant homogeneity within the DUs. RSD values (the standard deviation divided by the sample mean) calculated from triplicate sampling above 30 percent are considered "high" and suggest that analytical results may not be representative of actual conditions³. Total RSD values for the five PAHs detected above PRG in 2004 were less than 30 percent in both sets of triplicate samples, indicating an acceptable level of representativeness. Total RSD calculations, as well as analysis of field and laboratory RSD values, are provided in Table 2 of Enclosure 2.

5.0 COMPARISON TO PREVIOUS ASSESSMENTS

Soil sample FSA-SF-SCW was intended to replicate soil sample SO-SW, collected outside the south containment wall during the 2004 removal assessment. A comparison of 2004 and 2013 analytical results is presented in the table below:

		SO-SW	FSA-SF-SCW	FSA-SF-SCW-DUP
Analyte	Units	2004	2013	2013
Benzo(a)anthracene	μg/kg	2,400	1,600	2,100
Benzo(a)pyrene	μg/kg	2,800	1,800	2,100
Benzo(b)fluoranthene	μg/kg	1,800	3,100	3,100
Dibenz(a,h)anthracene	μg/kg	650	440	410 J+
Indeno(1,2,3-cd)pyrene	μg/kg	3,000	1,600	1,700

Notes:

DUP Duplicate sample SCW Southern containment wall FSA Francis Street Assessment SO Soil Sample The analyte was positively identified; the associated SW Southwest corner value is the approximate concentration of the analyte SF Surface soil sample in the sample and may be biased high. Micrograms per kilogram μg/kg

³ The 30 percent RSD threshold is based on Interstate Technology Regulatory Council ISM guidance (http://www.itrcweb.org/ism-1/7_3_Assessment_of_Error.html) and Alaska Department of Environmental Conservation ISM guidance (http://dec.alaska.gov/spar/csp/guidance/multi_increment.pdf).

TTEMI-05-003-0168 Francis Street Site Assessment Letter Report

6.0 ADDITIONAL SITE ACTIVITIES

On February 28, 2014, the EPA OSC and Tetra Tech site manager returned to the Site to survey the drainage ditch from the east end of DU01 to the west end of DU03. The survey was conducted with a theodolite and surveyor's rod. The ditch was found to have an overall slope of 0.00285 (3.19 feet of fall over the 1,120 feet length) west, towards the drainage canal. The elevation profile is depicted on Figure 9 in Enclosure 2.

If you have any questions regarding this report, please call me (John Snyder) at (678) 775-3085.

Sincerely.

John Snyder, PG

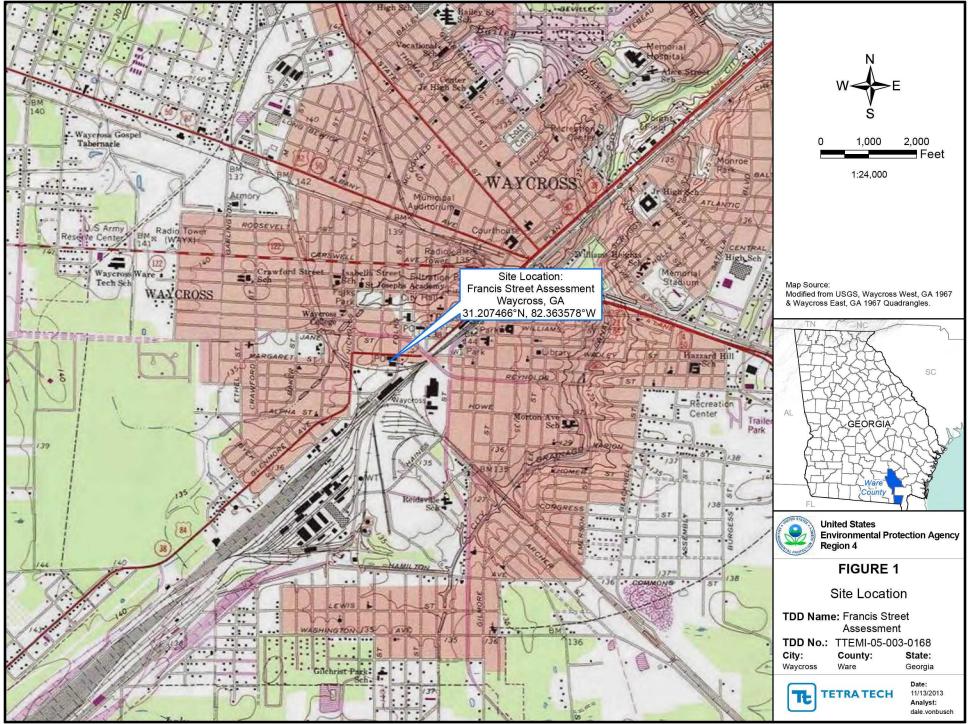
Tetra Tech START III Site Manager

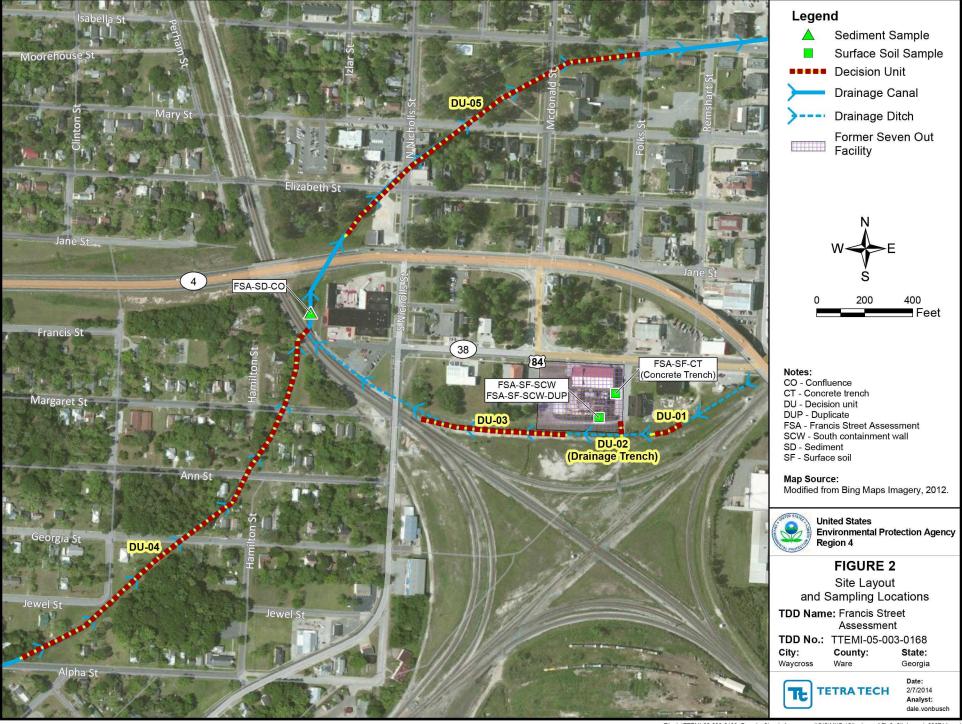
Andrew F. Johnson

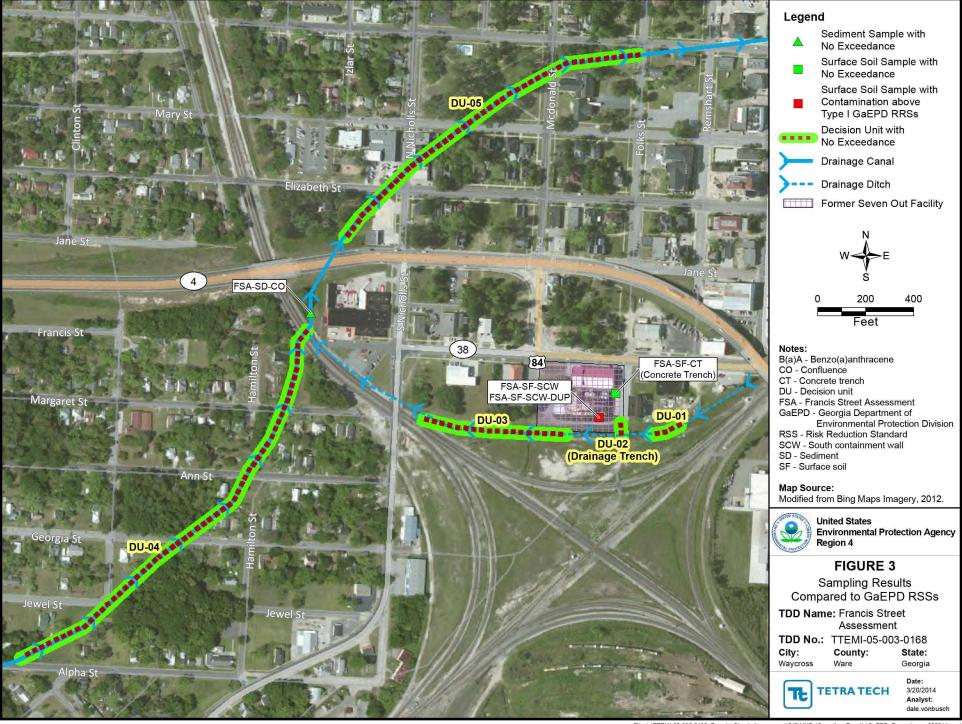
Tetra Tech START III Program Manager

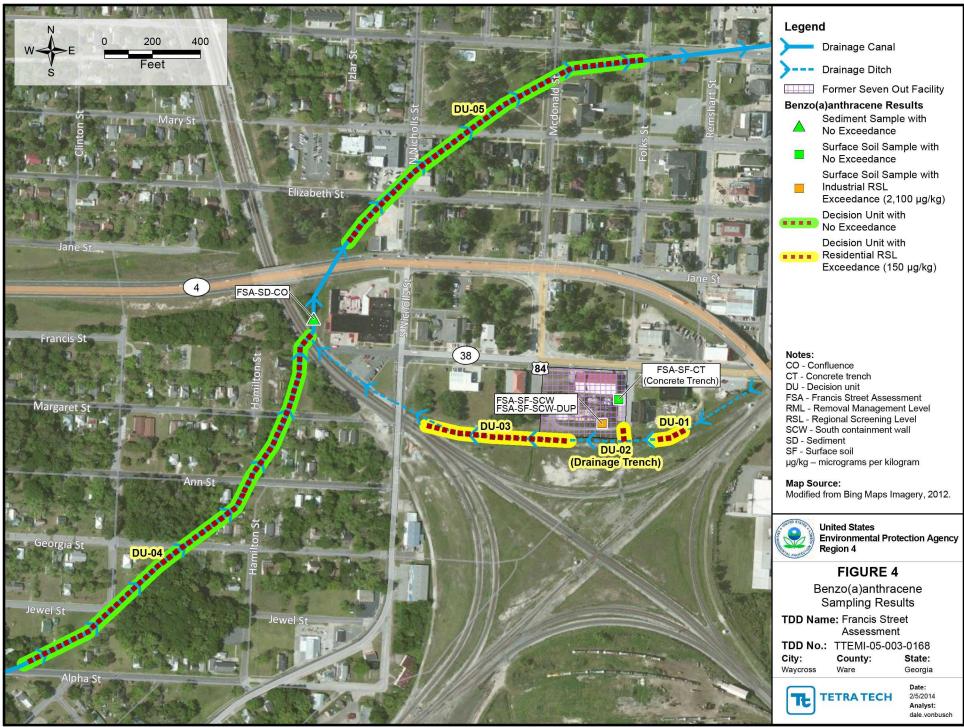
Enclosures (6)

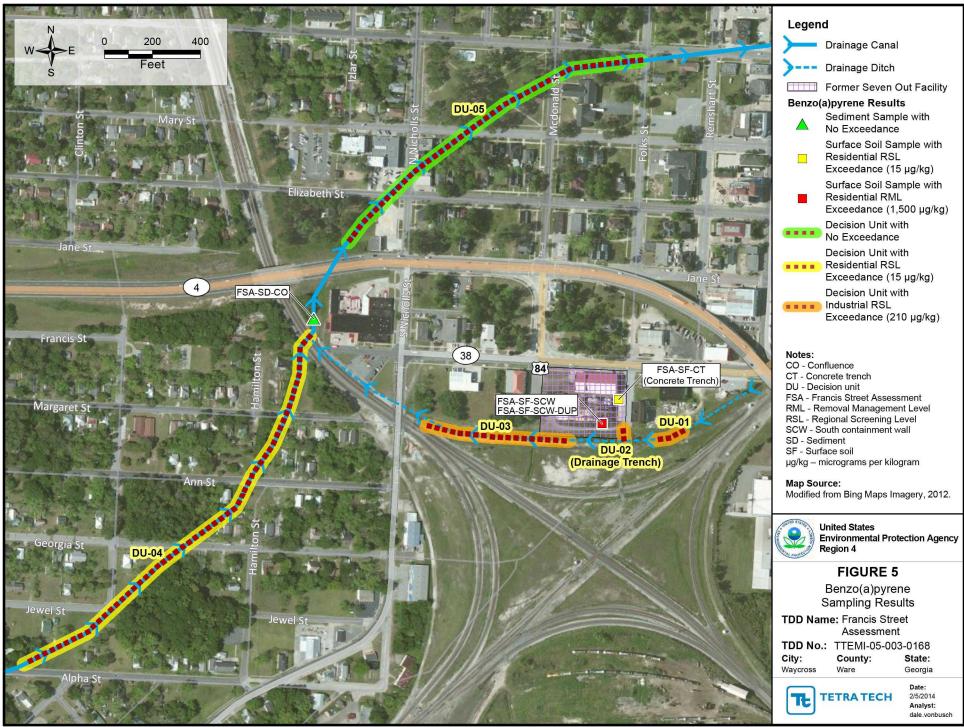
cc: Katrina Jones, EPA Project Officer

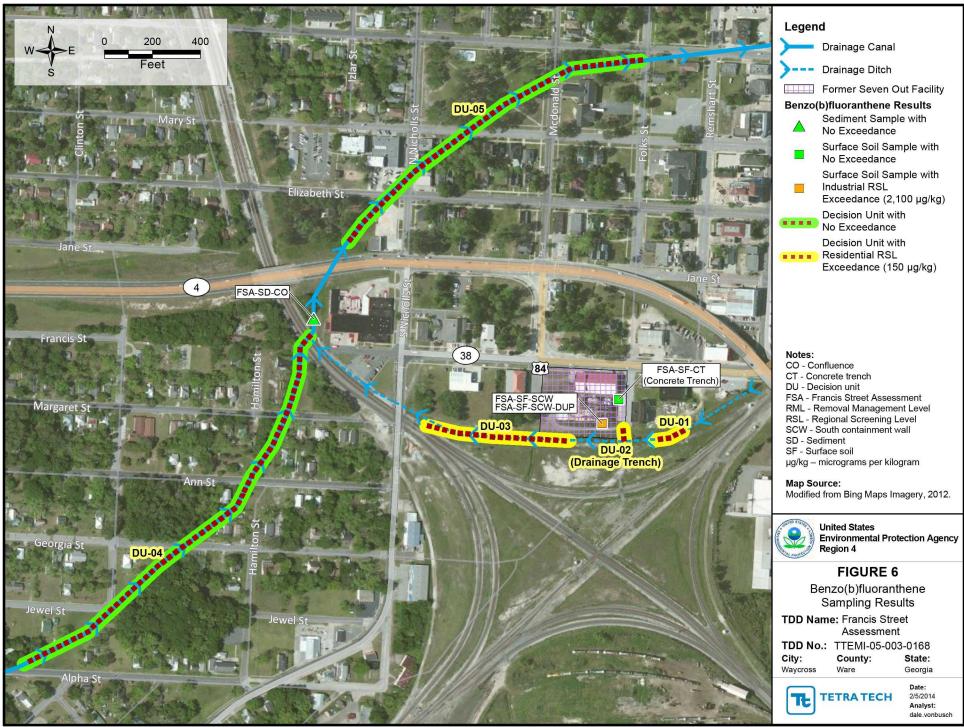

Angel Reed, START III Document Control Coordinator

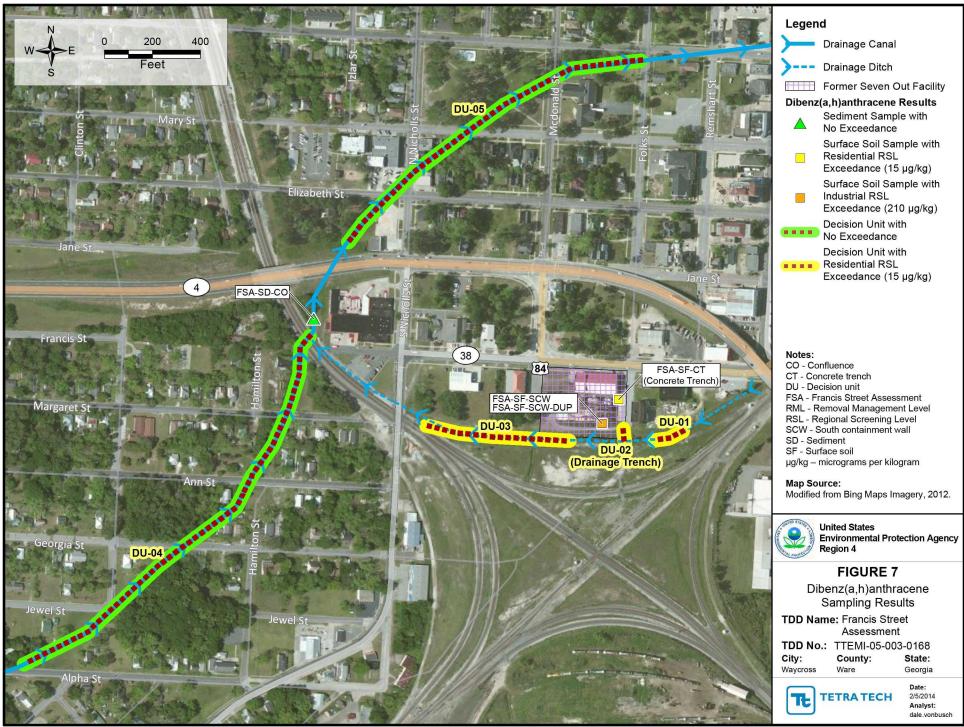

ENCLOSURE 1

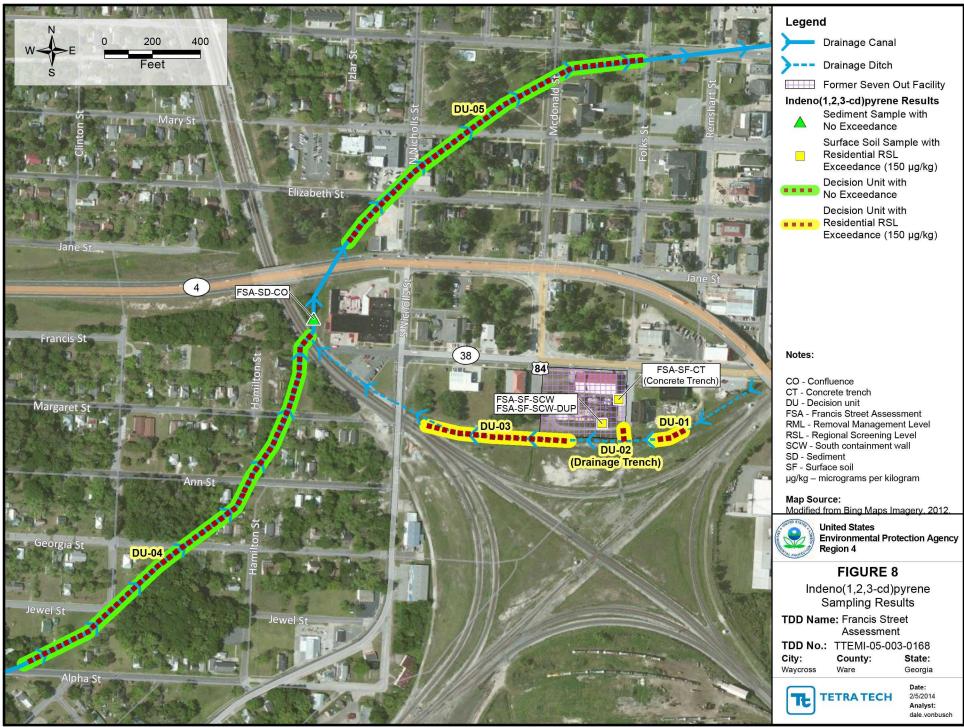

FIGURES

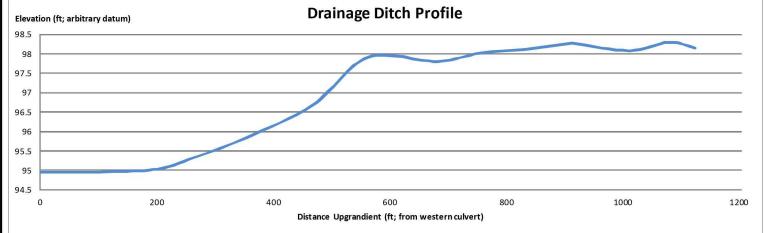

(Nine Pages)

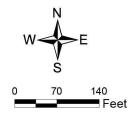












Legend

Measured Segment of Drainage Ditch

■ ■ Decision Unit

Former Seven Out Facility

DU - Decision unit

Map Source:

Modified from Bing Maps Imagery, 2012.

United States **Environmental Protection Agency** Region 4

FIGURE 9

Drainage Ditch Elevation Profile

TDD Name: Francis Street

Assessment

TDD No.: TTEMI-05-003-0168 County: City:

Waycross

State: Georgia

Ware

Date: 4/3/2014 Analyst: dale.vonbusch

ENCLOSURE 2

TABLES

(Five Pages)

TABLE 1 FRANCIS STREET ASSESSMENT ANALYTICAL RESULTS FOR SOIL AND SEDIMENT SAMPLES COMPARED TO GAEPD TYPE 1 RRS

Analyte	GAEPD Type I Risk Reduction Standard	FSA-SF-CT	FSA-SF-SCW	FSA-SF-SCW-DUP	FSA-SD-DU01	FSA-SD-DU02	FSA-SD-DU03-A	FSA-SD-DU03-B
Semivolatile Organic Cor	npounds (μg/kg)							
2-Methylnaphthalene	NL	39	560	470 J+	110	130	73 J	44
Acenaphthene	300,000	11 J+	130 J	54 J+	12 J	21 J	8 J	8
Acenaphthylene	130,000	35	570	690 J+	200	150	100	93
Anthracene	500,000	22	760	560 J+	230	140	100	110
Benzo[a]anthracene	5,000	58	1,600	2,100	370	320	190	180
Benzo[a]pyrene	1,640	77 J+	1,800	2,100	580	390	290	280
Benzo[b]fluoranthene	5,000	130 J+	3,100	3,100	1,500	760	670	630
Benzo[g,h,i]perylene	500,000	63	1,400	1,500	540	310	260	240
Benzo[k]fluoranthene	5,000	43	1,100	1,100	430	240	210	200
Chrysene	5,000	75 J+	2,300	2,800	510	420	270	250
Dibenz(a,h)anthracene	5,000	16	440	410 J+	150	87	75	75
Fluoranthene	500,000	160 J+	4,800	5,300	580	790	340	310
Fluorene	360,000	14 J+	360 J	120 J+	21 J+	32	13	11
Indeno[1,2,3-cd]pyrene	5,000	64	1,600	1,700	600	340	290	270
Naphthalene	100,000	76	540	400 J+	85 J+	120	53	39
Phenanthrene	110,000	94 J+	3,000	4,200	230	480	140 J	95
Pyrene	500,000	160 J+	4,500	5,800	670	780	400	370

Notes:

CO Confluence
CT Concrete trench
DU Decision unit
DUP Duplicate

FSA Francis Street Assessment

GAEPD Georgia Environmental Protection Division

J The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample.

J+ The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample and may be biased high.

μg/kg Micrograms per kilogram

NL Not listed

SCW South containment wall

SD Sediment SF Surface soil

The analyte was analyzed for, but not detected; the number reported is the laboratory-derived reporting limit (RL) for the constituent in that sample.

Shaded The reported value exceeded the GAEPD Type I Risk Reduction Standard for soils

TABLE 1 FRANCIS STREET ASSESSMENT ANALYTICAL RESULTS FOR SOIL AND SEDIMENT SAMPLES COMPARED TO GAEPD TYPE 1 RRS

Analyte	GAEPD Type I Risk Reduction Standard	FSA-SD-DU03-C	FSA-SD-DU04-A	FSA-SD-DU04-B	FSA-SD-DU04-C	FSA-SD-CO	FSA-SD-DU05
Semivolatile Organic Cor	npounds (μg/kg))					
2-Methylnaphthalene	NL	48	3.3 J	4.1 J	4.2 J	2.2 J	3.9 J+
Acenaphthene	300,000	8.6	0.74 J	1.2 J	1.4 J	9.5	0.91 J+
Acenaphthylene	130,000	95	4.4 J	5.3	6.6	1.2 J	2.7 J+
Anthracene	500,000	110	4.3 J	5.4	6.1	1.8 J	2.6 J+
Benzo[a]anthracene	5,000	180	16 J	16	24	4.5 J	13 J+
Benzo[a]pyrene	1,640	290	23 J	24	35	6	15 J+
Benzo[b]fluoranthene	5,000	690	39 J	39	53	10	20 J+
Benzo[g,h,i]perylene	500,000	270	22 J	22	30	5.4	12 J+
Benzo[k]fluoranthene	5,000	220	13 J	12	17	3 J	8 J+
Chrysene	5,000	260	21 J	21	31	6.8	16 J+
Dibenz(a,h)anthracene	5,000	78	5.3 J	6	7.3	4.8 U	3.1 J+
Fluoranthene	500,000	310	29 J	28	38	10	20 J+
Fluorene	360,000	11	2.2 J	2.6 J	3 J	17	1.7 J+
Indeno[1,2,3-cd]pyrene	5,000	290	22 J	22	30	5.1	11 J+
Naphthalene	100,000	44	4.1 J	5.3	5.8	3.3 J	3.6 J+
Phenanthrene	110,000	87	10	9.2	12	6	6.1 J+
Pyrene	500,000	370	32 J	35	41	14	27 J+

Notes:

CO Confluence
CT Concrete trench
DU Decision unit
DUP Duplicate

FSA Francis Street Assessment

GAEPD Georgia Environmental Protection Division

The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample.

J+ The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample and may be biased high.

μg/kg Micrograms per kilogram

NL Not listed

SCW South containment wall

SD Sediment SF Surface soil

U The analyte was analyzed for, but not detected; the number reported is the laboratory-derived reporting limit (RL) for the constituent in that sample.

Shaded The reported value exceeded the GAEPD Type I Risk Reduction Standard for soils

TABLE 2

FRANCIS STREET ASSESSMENT

ANALYTICAL RESULTS FOR SOIL AND SEDIMENT SAMPLES COMPARED TO EPA RSLs AND RMLs

Analyte	Regional Scr	eening Level	Removal Management Level		FSA-SF-CT	FSA SE SCW	ESA SE SCW DUP	FSA SD DU01	FSA SD DII02	FSA SD DU03 A	FSA-SD-DU03-B	
Analyte	Residential Soil	Industrial Soil	Residential Soil	Industrial Soil	15A-51-C1	TSA-ST-SCW	PSA-SI-SCW-DCI	rsa-sb-bevi	rsA-sD-Deuz	TSA-SD-DC03-A	F3A-3D-DC03-B	
Semivolatile Organic Con	npounds (μg/kg)											
2-Methylnaphthalene	16,000	53,000	690,000	6,600,000	39	560	470 J+	110	130	73 J	44	
Acenaphthene	340,000	33,000,000	10,000,000	99,000,000	11 J+	130 J	54 J+	12 J	21 J	8 J	8.3	
Acenaphthylene	NL	NL	NL	NL	35	570	690 J+	200	150	100	93	
Anthracene	1,700,000	17,000,000	52,000,000	500,000,000	22	760	560 J+	230	140	100	110	
Benzo[a]anthracene	150	2,100	15,000	210,000	58	1,600	2,100	370	320	190	180	
Benzo[a]pyrene	15	210	1,500	21,000	77 J+	1,800	2,100	580	390	290	280	
Benzo[b]fluoranthene	150	2,100	15,000	210,000	130 J+	3,100	3,100	1,500	760	670	630	
Benzo[g,h,i]perylene	NL	NL	NL	NL	63	1,400	1,500	540	310	260	240	
Benzo[k]fluoranthene	1,500	21,000	150,000	2,100,000	43	1,100	1,100	430	240	210	200	
Chrysene	15,000	210,000	1,500,000	21,000,000	75 J+	2,300	2,800	510	420	270	250	
Dibenz(a,h)anthracene	15	210	1,500	21,000	16	440	410 J+	150	87	75	75	
Fluoranthene	230,000	2,200,000	6,900,000	66,000,000	160 J+	4,800	5,300	580	790	340	310	
Fluorene	230,000	2,200,000	6,900,000	66,000,000	14 J+	360 J	120 J+	21 J-	32	13	11	
Indeno[1,2,3-cd]pyrene	150	2,100	15,000	210,000	64	1,600	1,700	600	340	290	270	
Naphthalene	3,600	18,000	360,000	1,800,000	76	540	400 J+	85 J-	120	53	39	
Phenanthrene	NL	NL	NL	NL	94 J+	3,000	4,200	230	480	140 J	95	
Pyrene	170,000	1,700,000	5,200,000	50,000,000	160 J+	4,500	5,800	670	780	400	370	

Notes:

CO Confluence
CT Concrete trench
DU Decision unit
DUP Duplicate

EPA U.S. Environmental Protection Agency

FSA Francis Street Assessmen

The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample.

J+ The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample and may be biased high.

μg/kg Micrograms per kilogram

NL Not listed

SCW South containment wall

SD Sediment SF Surface soil

U The analyte was analyzed for, but not detected; the number reported is the laboratory-derived reporting limit (RL) for the constituent in that sample.

 ITALICS
 Results equal or exceed the EPA Regional Screening Levels for residential soil

 BOLD
 Results equal or exceed the EPA Regional Screening Levels for industrial soil

 Results equal or exceed the EPA Removal Management Levels for residential soil

TABLE 2

FRANCIS STREET ASSESSMENT

ANALYTICAL RESULTS FOR SOIL AND SEDIMENT SAMPLES COMPARED TO EPA RSLs AND RMLs

Analyte	Regional Scr	eening Level	Removal Management Level		FSA-SD-DU03-C	FSA-SD-DU04-A	FSA-SD-DU04-B	FSA-SD-DU04-C	FSA-SD-CO	FSA-SD-DU05	
1 min y te	Residential Soil	Industrial Soil	Residential Soil	Industrial Soil			151152 2012	151152 20010	15/152 00	TSA SD-Deus	
Semivolatile Organic Con	npounds (μg/kg)										
2-Methylnaphthalene	16,000	53,000	690,000	6,600,000	48	3.3 J	4.1 J	4.2 J	2.2 J	3.9 J+	
Acenaphthene	340,000	33,000,000	10,000,000	99,000,000	8.6	0.74 J	1.2 J	1.4 J	9.5	0.91 J+	
Acenaphthylene	NL	NL	NL	NL	95	4.4 J	5.3	6.6	1.2 J	2.7 J+	
Anthracene	1,700,000	17,000,000	52,000,000	500,000,000	110	4.3 J	5.4	6.1	1.8 J	2.6 J+	
Benzo[a]anthracene	150	2,100	15,000	210,000	180	16 J	16	24	4.5 J	13 J+	
Benzo[a]pyrene	15	210	1,500	21,000	290	23 J	24	35	6	15 J+	
Benzo[b]fluoranthene	150	2,100	15,000	210,000	690	39 J	39	53	10	20 J+	
Benzo[g,h,i]perylene	NL	NL	NL	NL	270	22 J	22	30	5.4	12 J+	
Benzo[k]fluoranthene	1,500	21,000	150,000	2,100,000	220	13 J	12	17	3 J	8 J+	
Chrysene	15,000	210,000	1,500,000	21,000,000	260	21 J	21	31	6.8	16 J+	
Dibenz(a,h)anthracene	15	210	1,500	21,000	78	5.3 J	6	7.3	4.8 U	3.1 J+	
Fluoranthene	230,000	2,200,000	6,900,000	66,000,000	310	29 J	28	38	10	20 J+	
Fluorene	230,000	2,200,000	6,900,000	66,000,000	11	2.2 J	2.6 J	3 J	17	1.7 J+	
Indeno[1,2,3-cd]pyrene	150	2,100	15,000	210,000	290	22 J	22	30	5.1	11 J+	
Naphthalene	3,600	18,000	360,000	1,800,000	44	4.1 J	5.3	5.8	3.3 J	3.6 J+	
Phenanthrene	NL	NL	NL	NL	87	10	9.2	12	6	6.1 J+	
Pyrene	170,000	1,700,000	5,200,000	50,000,000	370	32 J	35	41	14	27 J+	

Notes:

CO Confluence
CT Concrete trench
DU Decision unit
DUP Duplicate

EPA U.S. Environmental Protection Agency

FSA Francis Street Assessment

The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample.

J+ The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample and may be biased high.

μg/kg Micrograms per kilogram

NL Not listed

SCW South containment wall

SD Sediment
SF Surface soil

The analyte was analyzed for, but not detected; the number reported is the laboratory-derived reporting limit (RL) for the constituent in that sample.

 ITALICS
 Results equal or exceed the EPA Regional Screening Levels for residential soil

 BOLD
 Results equal or exceed the EPA Regional Screening Levels for industrial soil

 Results equal or exceed the EPA Removal Management Levels for residential soil

TABLE 3 FRANCIS STREET ASSESSMENT RELATIVE STANDARD DEVIATION ANALYSIS¹

		Total RSD Ana	llysis (performed on 1	field triplicates)			Laboratory RSD Ana	alysis (performed on	laboratory triplicates)		Laboratory	100
Analyte (ng/kg)	FSA-SD-DU03-A	FSA-SD-DU03-B	FSA-SD-DU03-C	DU Standard Deviation	Sample Mean	FSA-SD-DU03-A	FSA-SD-DU03-A	FSA-SD-DU03-A	Sample Standard Deviation	Sample Mean	Total RSD ²	RSD ³	Field RSD⁴
2-Methylnaphthalene	73,000	44,000	48,000	15,716	55,000	73,000	62,000	47,300	12,894	60,767	28.6%	21.2%	7.4%
Acenaphthene	8,000	8,300	8,600	300	8,300	8,000	7,900	6,880	620	7,593	3.6%	8.2%	-4.5%
Acenaphthylene	100,000	93,000	95,000	3,606	96,000	100,000	96,900	85,400	7,692	94,100	3.8%	8.2%	-4.4%
Anthracene	100,000	110,000	110,000	5,774	106,667	100,000	101,000	102,000	1,000	101,000	5.4%	1.0%	4.4%
Benzo[a]anthracene	190,000	180,000	180,000	5,774	183,333	190,000	172,000	187,000	9,644	183,000	3.1%	5.3%	-2.1%
Benzo[a]pyrene	290,000	280,000	290,000	5,774	286,667	290,000	257,000	283,000	17,388	276,667	2.0%	6.3%	-4.3%
Benzo[b]fluoranthene	670,000	630,000	690,000	30,551	663,333	670,000	661,000	607,000	34,073	646,000	4.6%	5.3%	-0.7%
Benzo[g,h,i]perylene	260,000	240,000	270,000	15,275	256,667	260,000	255,000	227,000	17,786	247,333	6.0%	7.2%	-1.2%
Benzo[k]fluoranthene	210,000	200,000	220,000	10,000	210,000	210,000	210,000	180,000	17,321	200,000	4.8%	8.7%	-3.9%
Chrysene	270,000	250,000	260,000	10,000	260,000	270,000	259,000	238,000	16,258	255,667	3.8%	6.4%	-2.5%
Dibenz(a,h)anthracene	75,000	75,000	78,000	1,732	76,000	75,000	76,700	73,900	1,411	75,200	2.3%	1.9%	0.4%
Fluoranthene	340,000	310,000	310,000	17,321	320,000	340,000	293,000	267,000	37,000	300,000	5.4%	12.3%	-6.9%
Fluorene	13,000	11,000	11,000	1,155	11,667	13,000	12,000	11,000	1,000	12,000	9.9%	8.3%	1.6%
Indeno[1,2,3-cd]pyrene	290,000	270,000	290,000	11,547	283,333	290,000	287,000	249,000	22,855	275,333	4.1%	8.3%	-4.2%
Naphthalene	53,000	39,000	44,000	7,095	45,333	53,000	49,900	40,500	6,509	47,800	15.6%	13.6%	2.0%
Phenanthrene	140,000	95,000	87,000	28,572	107,333	140,000	95,900	86,000	28,748	107,300	26.6%	26.8%	-0.2%
Pyrene	400,000	370,000	370,000	17,321	380,000	400,000	358,000	331,000	34,771	363,000	4.6%	9.6%	-5.0%

		Total RSD Ana	lysis (performed on	field triplicates)		1	Laboratory RSD Ana	lysis (performed on	laboratory triplicates)		Laboratory	
Analyte (ng/kg)	FSA-SD-DU04-A	FSA-SD-DU04-B	FSA-SD-DU04-C	DU Standard Deviation	Sample Mean	FSA-SD-DU04-A	FSA-SD-DU04-A	FSA-SD-DU04-A	Sample Standard Deviation	Sample Mean	Total RSD ²	RSD ³	Field RSD ⁴
2-Methylnaphthalene	3,300	4,100	4,400	569	3,933	3,300	5,870	4,470	1,287	4,547	14.5%	28.3%	-13.8%
Acenaphthene	740	1,200	1,400	338	1,113	740	1,500	769	431	1,003	30.4%	42.9%	-12.5%
Acenaphthylene	4,400	5,300	6,600	1,106	5,433	4,400	8,550	4,350	2,411	5,767	20.4%	41.8%	-21.4%
Anthracene	4,300	5,400	6,100	907	5,267	4,300	8,020	4,370	2,128	5,563	17.2%	38.2%	-21.0%
Benzo[a]anthracene	16,000	16,000	24,000	4,619	18,667	16,000	56,400	13,300	24,142	28,567	24.7%	84.5%	-59.8%
Benzo[a]pyrene	23,000	24,000	35,000	6,658	27,333	23,000	77,400	20,800	32,062	40,400	24.4%	79.4%	-55.0%
Benzo[b]fluoranthene	39,000	39,000	53,000	8,083	43,667	39,000	98,400	35,600	35,317	57,667	18.5%	61.2%	-42.7%
Benzo[g,h,i]perylene	22,000	22,000	30,000	4,619	24,667	22,000	55,800	19,900	20,148	32,567	18.7%	61.9%	-43.1%
Benzo[k]fluoranthene	13,000	12,000	17,000	2,646	14,000	13,000	34,700	10,900	13,177	19,533	18.9%	67.5%	-48.6%
Chrysene	21,000	21,000	31,000	5,774	24,333	21,000	73,900	17,900	31,475	37,600	23.7%	83.7%	-60.0%
Dibenz(a,h)anthracene	5,300	6,000	7,300	1,015	6,200	5,300	12,700	5,090	4,334	7,697	16.4%	56.3%	-39.9%
Fluoranthene	29,000	28,000	38,000	5,508	31,667	29,000	64,600	22,900	22,522	38,833	17.4%	58.0%	-40.6%
Fluorene	2,200	2,600	3,000	400	2,600	2,200	3,000	2,150	477	2,450	15.4%	19.5%	-4.1%
Indeno[1,2,3-cd]pyrene	22,000	22,000	30,000	4,619	24,667	22,000	57,200	20,000	20,924	33,067	18.7%	63.3%	-44.6%
Naphthalene	4,100	5,300	5,800	874	5,067	4,100	8,850	5,140	2,497	6,030	17.2%	41.4%	-24.2%
Phenanthrene	10,000	9,200	12,000	1,442	10,400	10,000	12,400	9,160	1,681	10,520	13.9%	16.0%	-2.1%
Pyrene	32,000	35,000	41,000	4,583	36,000	32,000	74,100	27,100	25,837	44,400	12.7%	58.2%	-45.5%

Notes:

All results and calculations are presented without regard for data qualifiers

Total RSD is calculated by dividing the Total RSD Analysis standard deviation by the Total RSD Analysis sample mean.

Laboratory RSD is calculated by dividing the Laboratory RSD Analysis standard deviation by the Laboratory RSD Analysis sample mean.

Field RSD is calculated by subtracting the Laboratory RSD value from the Total RSD value.

DU Decision unit
FSA Francis Street Assessment
ng/kg Nanograms per kilogram
% percent

RSD Relative standard deviation SD Sediment sample

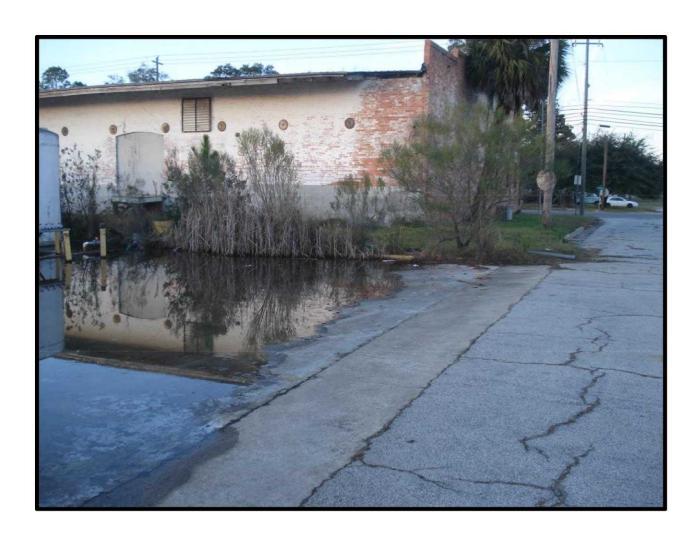
ENCLOSURE 3

PHOTOGRAPHIC LOG

(Six Pages)

OFFICIAL PHOTOGRAPH NO. 1 U.S. ENVIRONMENTAL PROTECTION AGENCY

Orientation: West Date: December 19, 2013


Photographer: John Snyder, Tetra Tech Witness: Amber Skiles, Tetra Tech

Subject: The former Seven Out wastewater treatment facility (located at 901 Francis Street,

Waycross, Ware County, Georgia) as well as surrounding stormwater drainage pathways, was the focus of the Francis Street Assessment. The former facility has been decommissioned, and most of the structures and equipment associated with former operations have been demolished and removed. Soil samples FSA-SF-SCW and FSA-SF-SCW-DUP were collected south (out of frame) of the former filter press

platform visible on the left of the frame.

OFFICIAL PHOTOGRAPH NO. 2 U.S. ENVIRONMENTAL PROTECTION AGENCY

Orientation: Northwest Date: December 19, 2013

Photographer: John Snyder, Tetra Tech Witness: Amber Skiles, Tetra Tech

Subject: Soil sample FSA-SF-CT was collected from a small concrete trench at the northeast

corner of the former Seven Out Site.

OFFICIAL PHOTOGRAPH NO. 3 U.S. ENVIRONMENTAL PROTECTION AGENCY

Orientation: South Date: December 19, 2013

Photographer: John Snyder, Tetra Tech Witness: Amber Skiles, Tetra Tech

Subject: Tetra Tech field team members, U.S. Environmental Protection Agency (EPA)

personnel, Ware County Health Department personnel, and Georgia Department of Public Health personnel participated in the sampling event. Sediment samples from five decision units (DU) were collected using incremental sampling methodology (ISM). ISM sampling was conducted using a specialized ISM sampler and stainless

steel bowls and spoons.

OFFICIAL PHOTOGRAPH NO. 4 U.S. ENVIRONMENTAL PROTECTION AGENCY

Orientation: East Date: December 19, 2013

Photographer: John Snyder, Tetra Tech Witness: Amber Skiles, Tetra Tech

Subject: The portion of the drainage ditch east of the former Seven Out Site was designated

DU-01 and served as the background sediment sample location.

OFFICIAL PHOTOGRAPH NO. 5 U.S. ENVIRONMENTAL PROTECTION AGENCY

TDD Number: TTEMI-05-003-0168 Location: Francis Street Assessment

Orientation: West Date: December 19, 2013

Photographer: John Snyder, Tetra Tech Witness: Amber Skiles, Tetra Tech

Subject: The portion of the drainage ditch running between the former Seven Out Site and the

railroad tracks west of the Site was designated DU-03.

OFFICIAL PHOTOGRAPH NO. 6 U.S. ENVIRONMENTAL PROTECTION AGENCY

Orientation: South Date: December 19, 2013

Photographer: John Snyder, Tetra Tech Witness: Amber Skiles, Tetra Tech

Subject: The portion of the drainage canal running between the Highway 82 overpass

(background of frame) and Folk Street was designated DU-05.

ENCLOSURE 4

LOGBOOK NOTES

(12 Sheets)

Outdoor writing products of or Outdoor writing people

All components of this product are recyclable

Rite in the Rain

A patented, environmentally responsible, all-weather writing paper that sheds water and enables you to write anywhere, in any weather.

Using a pencil or all-weather pen, Rite in the Rain ensures that your notes survive the rigors of the field, regardless of the conditions.

J. L. DARLING CORPORATION Tacoma, WA 98424-1017 USA www.RiteintheRain.com

> Item No. 371 ISBN: 978-1-932149-23-4

Made in the USA US Pat No. 6,863,940

Francis Street Assessment

Waycross, Georgia 05-003-0168

Name				
Address				
Phone				
Project				
		11.5%		

Jaha Sauda

TETRA TECH

John Snyder, PG Environmental Engineer

1955 Evergreen Boulevard, Building 200, Suite 300, Duluth, GA 30096 Tel 678.775.3085 Cell 770.402.9013 Fax 678.775.3138 john.snyder@tetratech.com www.tetratech.com

Helps protect your notebook from wear & tear. Contact your dealer or the J. L. Darling Corporation

CONTENTS

PAGE	REFERENCE	DATE
	Table of Vitnesses:	
		cerl.
	John Snyder, T+ Site Mana Amber Skiles, T+ Field teum	(AS)
	Matt Huyer, EPA Task Maniker	(MH)
	Norean Kloc, Ga Dept. of Health	(NV)
	Kelley Donner Public Health	(vn)
	Letter Commo, I worker the street	(-0)
	All fieldwork was conducte	d
	in accordance withe the	
	EDA Rogsen 4 procedures	,
	EPA Region 4 procedures detailed in the Final	
	Quality Assirance Project	3
	Plan (QAPP): Francis Stre	et
	Assessment dated 12/10/13	
	1	
	Programme and the second	
		/S - N

3

0700 - START Snyder (15) + Skiles (AS) on-sile; beam equipment prep -Objective: conduct soil + sed men scimpling on site toff site Westher : clear high of 740 currently 400 HIS topics to cases: traffic, sum hydra. 7730 DOH Stephen Johnson on-5, 10 (912) 288-1266 Stephen will be helping tomorrow if needed - just stopped to meet + greet, 0750- Noreen Kloc (GaPOH) -Dept of Public Hezard on site -815 - OSC Huyses on 6/te H+S Meeting 0855- Collect so: I sample FSA-SF-CT from 0-6" bys (NS/NSD) 0912 - Collect soil sample ESA SF-SCW from 0-6" bas -0918 - Collect soil sumple FSASF-8CW-DUP form 0-6" by5 0935- Kelly McDonner w. In Public -Health on site Scale: 1 square = ____

1045-Collect sedment sample FSA-50-DUDS for 30-increment composite (10 status 3 accements per statem 1120- Collect seadment sample FSA-SD-CO from 5-pt camposite n "confluence" area. 0-3" bys-1235-Collect Sedoment sample. FSA-SO-DUOY-A (30-pt comp) -1240-Collect sedoment scumple FSA-SD-DUDY-B (30pt camp) -1245-Collect sedment sample -FSA-SD-DVD4-C (30pt cump) -1255-Break for lunch 1345 - Beck on 514 1500 - Collect sediment sample FSA-50-DU03-A from DU03-(30 pt composite; 0-3" bys) 1505-Collect sed ment sumple FSA-50-DUD3-B from DUO3 (30pt composite from 0-3 bas)-1510 Collect sedment sample FSA-SD-0003-C from 0003 30pt composite from 0-3 pss)

2/28/10	4	
	1	
Survey	notes	, T
begn	on	
00011		
Pg 8		1 F
1 0		1 1
Q		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
		1 F
		1 1
	7	
X		
		Po
		4 - 1

Scale: 1 square = ____

Rite in the Rain.

Scale: 1 square =

2 25 2014 1021 - esc HirER SART SINDER TRAST OF DICH REHIND SELEN OUT FAILTY TORCOL AG-308 TRANSIT TACHEOMETRIC CONSTANTS ASSIMED D= Cs +k where | C= 100 D= HORIZONTALDIST K-= 0 S = DSTADA READINES AND S= Dccsq= Cscs V = D sin q = Cscosquing S = HORIZ DIST AT ANGLE D= DIST TO RED V = VERTICAL DIST TO CATERINE ELEV AH= ELEV V+HI-CL CL= CENTERUNE HI = HEIGHT OF INSTRUMENT g = ANGLE OF SCOTE

11	POPUE LEVELINE MANUEL DE LEVELINE MANUEL DE LEVELINE DE LEVELINE DE LEVEL DE LEVELINE DE LEVEL DE LEVELINE DE LEVELINE DE LEVEL DE LEVELINE DE LEVELINE DE LEVEL DE LEVELINE D		* * *		
PROAU	e lev	ELINE		N. wot	#P X
	1 1 1			しいいし	IDER &
		1 0		9 9	
		P. C.	7-7		F
Access to	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1			
	4				/
	B	1			100
	18	1 1	/2/	1211	/ Cr
1 X	13	الأن	1/12	121	1000
r i	· · · · · · · · · · · · · · · · · · ·	124	600	8 /s/ e	الم المالية
		1.0	£70 14		० न्०५
	//		\mathbf{x}'	8	
		2+0510	2/10	0+00	
18.1		CF10 00	O+c	3	ST4#
18 3	+143, 2+1	700			
1/2/	NO B				
1/2	1	F 7	60	E E	9 8 1
	11		- 16		
Z.			A. 1 1		
	E 7 T T T T T T T T T T T T T T T T T T	t t	C 1 3	E X	4 0 1 4 K 4
1 1		1		1 1	
1 1		47	1 1	1	
		12			5 t t
1 1	1 1			1	1 1 1
10 10 10 00 10 00	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 3 0		

Scale: 1 square =

1 1 1

Rite in the Rain

Scale: 1 square = _

SEV ES (H) FS US STAS (FT) 8.10 9.4x 8.16 6.98 8.15 04/5 16.76 15.76 18.05 16.76 15.49 04-86 9.86 98,29 1092 9.86 8.30 10.08 008 10.53 1008 9.33 0.405 0+0% 9.88 98.27 10.27 9.38 9.49 10 04 98,11 10.43 10.04 940 0405 10 14 98 0/ 10.59 10 14 9.40 0406 10 35 97.80 mas 10.35 9.25 6+07 10 25 97.00 12.91 10 30 9.00 6408 6 32 101.83 8.23 6.34 4.41 TP2

TOT (PT) 000 C" C OO & OO O INTEL AT IN CORDER CH POLICE 107 15.0 0131 LOS TEP 70 59.5 6 0 LOS PAUM 6252 0 0°C LDS BRUSH 29 32.5 00 LDS PALM #Z 330 21 20 UM AFTER CONFINENCE 307 35 000 LAS BIGGREEN BUT 298 035 00 WAY IN THE W TANK FARM EDGE -292 235 C'6 US CENTER OF (P) LET 201 68.5 TEVERENERGE

Scale: 1 square =

Rite in the Rain

2/28/14 TET ICH ICV O'C' TEVERHONE POLE FROM STAZ 00 46 125 60' TREE E BOSE OF (P) LOT, RDB 60 OZS SO PDB WEDGE OF TOUT BUDG 70 215 50 208 730 13.5 0'2' PDB CHECK FROM STAZ GC &C BACKSIGHT FROM STAS 129 345 00 RDB FROM STAR 135°59 5 000 135 59.5 0 17 Rite in the Rain. Scale: 1 square =

Scale: 1 square =

						1	1		1	į	1
		4						1		1	
	-	-	1		1	10	×	1			
* 10 F		ind	1		1	1	1	1	7.	17	
			592						1		
	01	0/	1	1	1					1	7
	/////	1/1	r c	1	-		1	47			
1	14/10	H(I)	m						i i		
4	M. 31	1-10	1							1	1
-		,	1						14	- August	-
6) Yi	1	112	/1/	11				Ť	1	1	
	31	101	1/6	1		74 (A)			1	1	
	//	1	U		Å.	1	i	No.	1		
1			, k		Ī	7			1		i
		1 1				1		7 1	- 1	-	
1 1		1 1	1		i i	1	1	77	*		
	7 1		*			1		İ	la la		7
1	1 01	1 1	- 1	1		- 10			-	=4	1
			1		A E	2,6	-	3. 1	F	19	
			1		1			+		1	1
				-		15	+		-		
11 11		1 1	1		A	1		#1-5		-4	
	1 1				7	-	7	, E	4	9	-

							-		12 12		1		1 10 10			
1							ı						-			
١										*						
1	1	- 1														
ł	4						ė :	-				6				-
	- 4											-				
																7
ł								+		-	L	1				
-						1					(a) (b)				, k	
1				1)			(4
1	- 1							_			1	-			15	-
												1				
ł	-										-			1	1	4
	_ 1										1					
1																
1										-						
							,	t.	8 3			7 ·			1 13	
1			1					17	-			1		1		
	- 7		1			,		0				()				
																1.
	- 1).		E F						10000	1000			Holloon.	1
					l									2		
						ì				-				-		
	- 1		1			t-				-						
							Ì					1				3
																4
4	1														7	4
	-															-
1																

1	1	1	10	1		A	12	.4.4	1					
10	100			10		1	1	1	1				1	
-	-	-	-			1	-		-	-	1	-	1	
						30				4	24			
- 00				-	34						116			1
1	-		- 0	+	11)	-	+1	111	+	1-1	1/4	,		
Ý.			*					(4)	4					
1		10	1		100	3								1
*	1-1		. 8	9.1	- 05	1	7	1.0	-	111	-	1	1	1
		1.4			310		+		4			3		1
9	70		. 1		· ·	+		- 1		1-	7	1	- 1	
		8		-									-	
		20				*	1					3	Y	
	10	-	-	1	_	1	- 0		- 1	-				
									,					
				1		3	1	1			1		1	
	100	-	1	+	18		1		4	-	-	11	- 1.	7
, t.	10		9		4		4			1		1	11	
		9	1		,	9	10						1	
1	1		- 1	-	1	- 1	-1-	1	-	1	1		1	
			A		+	X.		1		. 65	4		3	1
	- 14	-/-	1	1	1		- 1	+		- 1	1	1	-1-1	
		-	- 1	1				4	-					. 1
		-1			1				1	10		1		1
		1	- 1	41		-		-		+	A.			
4				- 1			15		3			1	1	13
									16	20		- 31		,
1		1		1			-	TY.	- r		-			-
7						-					1	11	3.	
				-					iit.					
1	- 1	-	-1-	-11-	4			,	(+:		1	1	1	1
3.	10			4.		(8)	15	1	35		100			
			- 1	- 1)	4	_ 1	- 1	7.80	- 1	3	11	T	
.9.:			+	3				*	(6)					
1					1	4			3.	4			*	
	- 6			1	1	i i		1	1.1	Ж	1	4		1.
1		1										1		1
					1.				4	-				
	-	1			-	-	į.			1	-			
				X	,		90			35				
				4								1		
- 1	1	, i	. 1.	1		+	. 6	+	- 1			19	9	3
		15				*			1				1	
1	-	E E	4	1	1.	70	- 1	1	11	1	1.	- 1	1	
	2		. *	1		71		h :	- 14		- to			
14'	×	k 1		T.		1		**						
	- (-	- 4	-	-	-	-	1	-	-		-		
1	F		-			-1		1			100			-49
					7		- 1	16			-	4		All
-		-	100	-	-		1	(6):	1.6	14	F.	1	+	JE.
1	. *		11		111	1			4					90
			11.	1	1			1		4	- 1	14		¥.
(1)			14	1	- 15.	1.	-		- 1	1		1	100	1
18.7	*			*	11-			4.	4			1	54	- 6
10	- k-	-	4	1	F.,	-4	- 1		4.	-	1/	- 1	*	-
110			17		7						- 1	,		
2.6				*	10	1			- 4				- 11	
-	-	100			-	-	-	1 4	7	-	+			
-							-				4		ik:	1
		*							4		1			
-	-	- 1-	- 1	-		81	- 1	+:	-1	+ 1	- X	1.	- 1	- 1
. 16		15	4		4.7		4			1.6	41	14		à
- Di-	i.					. 4		0	- 1				1	1
-4.	A	1	1	-		1.1	15	Ti			*	1		- 1
5.0	14	1	6.4		4			4		39.			-	1
	-							-0.	Y	- 0	A): -	- 1		
-														

Scale: 1 square = ____

10			Pl	noto	109	contd from 48
Phot	5 #	CHIE	TIME 1003 1014	drope,	O. Car	Subject
62	96	3 4	1003	5	5	START IS + EPA+ MH sampling DUOS
1	97		1014	20	5	STARTUS+ AS sumpling DUOS
	98		1013	Q	52	Sectron of DUOS
1	99	^^	1032	7	SU	START 15 + AS sumply DUDS
63	00	1/3	10	1/6	N	Section of DUOS
1	01		1033		SU	
	02	7	105\$		5W	Eguipment decon
	03	a	1352		W	00-03
	64		227		NW	Concrete trench
1	05		17.	5	5Ē	00-03
	06		1733	/	E	00-01
V	07		17		W	00-03
	R					
	_					
			_			
						0

Scale: 1 square = ____

Rite in the Rain.

Photo log

OFFE THE Photog Photos Former Seen Out fishing E 1514 6241 6242 6243 5 6275 prepary for fieldware 2 6276 Stunding water on site 627 NW 0922 ication of 6280 end of MI-US 0943 6281 START IS IN DU-OS 0952 6282 START IS + EPAMH sumply DU-DS 6283 6284 M 7953 6285 6286 DU-05 calvert 0956 START IS + EPA MH Sumpling DUOS 6287 CX 0956 6288 3957 6287 0957 6290 0958 629 Seatron of 1000 6292 1001 STARTUS + EPAMH sampling DUOS 6293 1001 START JS+ AS souply DU-OS 6294 1002 1295 STARTUS+EM MH samply DU-05

Scale: 1 square = familian contid py 47

Outdoor writing products of or Outdoor writing people

Copier & Ink-Jet Paper

Bound Books

Loose Leaf with Ring Binder

Memo Books

All-Weather Pens

Notebooks

RiteintheRain.com

M

4

9

10

13

15

6